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sionality of term vectors. Namely, in the vec-
tor-space model of IR, the documents are repre-
sented as vectors of weights, where each weight 
corresponds to a term in a vocabulary. Removing 
stop-words and very rare words from the vocabu-
lary is the first step in dimensionality reduction, 
and on top of this, further reduction by stemming 
is estimated to be about one third [6]. Significant 
benefits in retrieval performance are sometimes 
disputed ([4] §3.4), at least for English, but for 
highly inflectional languages stemming or some 
equivalent preprocessing is essential [5]. Stem-
ming can also be used as a preprocessing step in 
information extraction, and various other tasks.

Is Suffix stripping sufficient? Beside suffix 
removal, one could be tempted to use prefix re-
moval as well, but prefixes usually change word 
meaning radically and it is preferred that they 
are left intact [7]. Stemming has been a mainly 
suffixbased transformation since the publica-
tion of the Porter’s stemmer [6], and it has been 
successfully applied to several other languages 
of Indo-European family; e.g., stemmers for 
16 languages are implemented in the Snowball 
framework [7]. However, one should not gener-
alize this suffix-oriented methodology to all lan-
guages; for example Arabic relies on prefixes, 
suffixes, and infixes in morphological transfor-
mations, such as using prefixes to indicate per-
son feature in verb. The languages in the Bantu 
group use prefixes to form plurals. For some 
languages such as Chinese, this question is of 
no relevance at all. Irregular inflections are not 
well-handled by suffix-based transformations 
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1 Introduction
Two important tasks at the low level of Natu-

ral Language Processing (NLP) are stemming and 
lemmatization. Stemming is well-known in the 
NLP, IR (Information Retrieval), and Text Min-
ing research areas as an essential preprocessing 
step for some tasks, such as text and document 
retrieval, document clustering, classification, in-
formation extraction, and other content-related 
applications. Descriptively speaking, stemming 
is a word transformation in which a word may be 
stripped of some suffixes without loosing its core 
semantic content. Very frequent words are usu-
ally removed as stop-words in an IR system, and 
they are not subject to stemming. We could think 
of stemming as a process of normalization in 
which several morphological variants of a word 
are mapped into the same form. An elaborate dis-
cussion about stemming and its application to IR 
is given in [7]. Stemming brings two important 
benefits to an IR system: (1) a better IR recall 
can be achieved since query words are matched 
with their variants in the documents, and (2) 
stemming decreases the size of the overall term 
vocabulary, which leads to significant efficiency 
benefits in speed and memory requirements, due 
to decreased size of the term index and dimen-
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and they should be handled as exception word 
lists, one of which is the stop-word list.

The concepts of a word stem and a word root 
are related but distinct: A stem is a product of 
the stemming process, which conflates all se-
mantically close words, while a root is an “in-
ner” word from which the initial word derives; 
i.e., it has an etymological meaning [7]. Finding 
a root frequently requires removal of prefixes as 
well, while they are not removed in stemming. 
Another computational problem related to stem-
ming is morphological analysis, which aims at 
breaking words into smallest parts that maintain 
a unit meaning related to the meaning of the ini-
tial word [3].

Lemmatization. Similarly to stemming, 
lemmatization is a morphological transforma-
tion that changes a word into a normalized form. 
However, while the purpose of stemming is to 
conflate related morphological variations into 
one unifying form, and separate unrelated forms, 
a lemmatizer returns the corresponding lemma, 
which is the normalized word form as it would 
appear in the dictionary.

In the rest of the paper we will first discuss 
related work in section 2, then we will formally 
introduce our approach and methodology in sec-
tion 3. In section 4 we describe the resource that 
we used as a the starting point. In section 5 we 
describe experiments and discuss the results, and 
in section 6 we conclude with a summary of the 
results and the main contributions, and propose 
tasks for future work.

The resources and program used in the paper 
are made publicly available and can be found at 
http://www.cs.dal.ca/˜vlado/nlp/2007-sr.

2 Related Work
Likely the best-known and most widely used 

stemmer is the Porter stemmer for English [6]. 
The Lovins’s stemmer was another known stem-
mer, created about the same time (a bit earlier) 
than the Porter stemmer. The original Porter 
stemmer was implemented in BCPL, the pro-

gramming language that was a predecessor of C 
and not used so much these days. The stemmer 
has been re-implemented in many different lan-
guages, but the reader should be aware that many 
of them do not implement stemmer exactly as it 
was specified.1 Both, Porter and Lovins’s stem-
mers, are examples of algorithmic stemmers. 
There are two general approaches to stemming: 
dictionary-based and algorithmic. We discuss 
them in more details in the next section.

Since the appearance of the Porter stemmer 
a number of stemmers were implemented. For 
example, the Snowball framework [7] at the mo-
ment includes stemmers for 16 languages. Rus-
sian is the only Balto-Slavonic language currently 
implemented in the Snowball framework. There 
are some other implementations being publicly 
available. A notable site is CPAN2, which hosts 
several stemmers, including a wrapper module 
for Snowball. For majority of languages there 
are no publicly available stemmers, especially 
for languages with sparse electronic linguistic 
resources. To paraphrase [7], while there are 
large amounts of publications discussing stem-
ming, there are only a few descriptions that can 
be readily implemented in the popular efficient 
programming languages, such as C, Perl, Java, or 
similar; and there are a relatively small number 
of publications giving quantitative analysis and 
evaluations of stemmer performance.

The theoretical basis of our methodology is 
related to the finite state methodology described 
in [1] and [8].

Related to Serbian language, our search for 
a wider set of stemmers for any of the Slavonic 
languages of former Yugoslavia produced only 
a few results. Two stemmers could be found: A 
stemmer for Slovene is described in [5] and it is 
evaluated on an IR task, but we could not locate 
any available implementation. The “three new 
stemmers for Slovene” were mentioned at the web 
site of the INCO-Copernicus project3. There was 
a discussion at the Snowball list about including 
a Slovene stemmer into the framework4. There 
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is a publicly available Perl code for a Croatian 
stemmer5. It includes very limited documenta-
tion (several code revision comments), and only 
the author’s user id ‘dpavlin’. It seems to be a 
short and well-written stemmer, but it is not clear 
what is its coverage. It could be a toy stemmer 
designed only for 143 words included in the test 
data. The other related projects on morphological 
analysis that seem to have implemented lemma-
tizers, but not stemmers are [10] in Serbian and 
[9] in Croatian.

Contributions. The three main contribu-
tions of this paper are: (1) developing and mak-
ing publicly available implemented stemmer for 
Serbian, and associated resources, (2) providing 
quantitative analysis of the stemmer and vari-
ous steps in the process of its development, and 
(3) proposing and testing a general approach to 
building stemmers and lemmatizers for highly-
inflectional languages with sparse resources. We 
find that the method that we used provide some 
interesting insights into the algorithms and data 
structures needed for efficient implementation of 
such stemmers.

3 Background
Algorithmic and Dictionary stemmers. 

There are two approaches to building stemmers:
1. dictionary-based approach and
2. algorithmic approach.
In the dictionary approach, we rely on the ex-

tensive linguistic knowledge collected in a ma-
chine-readable dictionary, while in the algorith-
mic approach we use a relative small set of rules. 
The algorithmic approach is generally more ef-
ficient and more compact in the sense of program 
size, i.e., Kolmogorov complexity. According to 
the Occam’s razor this should lead to more gen-
erality and robustness when previously unseen 
words are encountered. On the other hand, the 
dictionary approach is more straightforward in 
handling exceptions and may be easier to modify 
and maintain. The boundary between approaches 
is not clear: a dictionary approach usually needs 

at least some rules. For example, in many highly-
inflectional languages, such as Serbian, proper 
names are inflected and one cannot expect to 
have all proper names included in a dictionary. 
Similarly, an algorithmic stemmer will usually 
have lists of exceptions, which are small diction-
aries. The approach that we explore here is algo-
rithmic. On top of the known advantages of the 
algorithmic approach, an algorithmic approach is 
even more advantageous in the context of hav-
ing an initial lexical resource of limited cover-
age with significant number of errors, i.e., noise. 
Overfitting the model with the resource, which 
would come with the dictionary-based approach, 
would lead to a decreased stemmer performance 
not only on the unseen words, but also on the 
training lexicon.

Stemming and Lemmatization. Under a 
more general term lemmatization we distinguish 
three different levels, each of which provides 
more sophisticated analysis

of a word:
1. stemming, which has been described,
2. direct lemmatization, or translation of a 

word form to a lemma, and
3. annotated lemmatization, or translation 

of a word form to a lemma annotated with the 
features associated with the word form.

In direct lemmatization, for any given word 
from a text, the lemmatizer returns a lemma, i.e., 
a base form of the word that could be found in a 
dictionary. The advantageous of direct lemmati-
zation over stemming include better distinguish-
ing between word variations, and this would lead 
to better applications in the IR domain. The ap-
proach could also be used in on-line dictionaries 
where users frequently enter variations of a word 
that are not directly represented in a dictionary, 
but their base form is. A disadvantage of direct 
lemmatization is that there could be a number 
of inherent ambiguities, since some word forms 
may correspond to different lemmas. Without 
knowing the word context, a lemmatizer can 
only return all of them and let the user or calling 
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application resolve ambiguities. In the stemming 
process, these ambiguities are resolved by merg-
ing different lemmas and their word forms into 
the same class, which has a single representative 
stem.

Annotated lemmatization maps, similarly 
to direct lemmatization, a word form into one or 
more lemmas, with an addition of providing a 
set of morphological features that are associated 
with this word form, such as gender, case, and 
number. The set of features should be such that 
an inverted process of morphological generation 
could produce the exact word form based on the 
provided lemma and the set of features. Annotat-
ed lemmatization can be regarded as an extended 
direct lemmatization, since it incrementally pro-
vides more information. Annotated lemmatiza-
tion may face a higher degree of ambiguity than 
direct lemmatization, if there is more than one 
set of features that generate the same word form 
from the same lemma.

As an example, stemming translates all words 
in the set {boxer, boxers, boxing, boxed, . . . } 
to the word ‘box’; direct lemmatization makes 
translations ‘boxers’ → ‘boxer’, and ‘boxing’ 
→ ‘box’; and annotated lemmatization produces 
translation ‘boxers’ → ‘boxer.noun.plural’.

4 Methodology
Based on the published literature, an exclu-

sive algorithmic approach to stemming has been 
suffix stripping, or, more precisely, suffix substi-
tution. The main representative is the Porter al-
gorithm: The algorithm groups the rules into five 
steps applied in succession and at most one rule 
can be triggered in a group. Each rule consists of 
a condition and a substitution of the form s1→ 
s2, with the interpretation that if the condition is 
satisfied for a word and the word has suffix s1, 
the suffix s1 is replaced with suffix s2. The condi-
tions used in Porter stemmer are either such that 
they can be represented as suffix requirements as 
well, they involve minimal length of the stem in 
number of syllables, or it is a requirement that 

the stem contains a vowel. If several rules in 
one group are applicable, then the longest suffix 
match is applied. The total number of rules is 63, 
but if we want to represent them in a “plain-suf-
fix” format, e.g., instead of matching a “double 
consonant” we actually repeat the rule with each 
consonant, then the number of rules is about 120. 
These kind of rules seem to be applicable to stem-
mers for other languages in the Indo-European 
family as well. This is the motivation behind the 
development of the special-purpose program-
ming language Snowball [7].

It has been noted that the conditions on the 
stem length do not seem to be very important for 
Russian and Slovene.6 Based on this observation, 
we assume that the plain suffix substitution rules 
should be sufficient in building our stemmer. We 
use only some trivial conditions on stem length, 
and exploring further these conditions is part 
of the future work. Compared to more complex 
rules, the plainsuffix rules are sufficient since the 
complex suffix rules can be expressed as a larger 
set of plain-suffix rules. Since the Porter stemmer 
is roughly equivalent to about 120 plain-suffix 
rules in English, which is a low-inflectional lan-
guage, we expect that the number of plain-suffix 
rules for a highly inflectional language such as 
Serbian could be an order of thousands.

Lexical Morphological Resource. Our base 
lexical resource is a list of mappings of words 
w into their lemmas l. This “mapping” is not a 
functional relation since a word could be mapped 
to several lemmas. It is a general word relation: 
w →l   l.

A Simple Dictionary-based Direct Lemmatizer 
(SDDL) could be created by using this resource. 
For any given word w the lemma l(w) is deter-
mined by the resource relation w →l  l(w). Two 
issues are: (1) ambiguity, since one word could 
be associated with more than one lemma, and (2) 
coverage, documents regularly include words not 
seen before in a dictionary (hapax legomena).

Stemmer Derivation. The process of deriving 
a stemmer is divided into the following steps:

VLADO KEŠELJ, DANKO ŠIPKA



27a

4.1 creation of stem-classes,
4.2 generation of stems and suffixes,
4.3 sorting suffixes by frequency, and
4.4 generation of suffix-rules.
4.1. Creation of stem-classes. If two words 

w1 and w2 have the same stem, we say that they 
conflate [7], and we write w1 ~ w2. The confla-
tion relation is an equivalence relation and it 
partitions the set of words into the classes of 
equivalence. We call these classes stem-classes. 
We create the stem-classes from our resource by 
defining the conflation relation to be reflexive, 
symmetric, and transitive closure of the relation 
→l  . Namely, for any three words w1, w2 and w3: 

w1 ~ w1,
w1 →

l   w2 ⇒ w1 ~ w2∧w2 ~ w1, and
w1 ~ w2∧w2 ~ w3 ⇒ w1 ~ w3.
Transitive closure is frequently implemented 

using matrix, but it would likely be prohibitively 
expensive in this case due to matrix size. An effi-
cient way is to use the UNION-FIND data struc-
ture [2]. The result of this phase are stemclasses, 
i.e., groups of words that should be conflated by 
the stemmer. All words derived from the same 
lemma, according to the relation →l  , will be con-
flated, but since one word may be associated with 
several lemmas, these lemmas will be merged 
into the same class as well. The quality of stem-
classes needs to be verified experimentally.

4.2. Generation of stems and suffixes. In 
this step we need to identify what are correct 
stems for each word and good suffixes. An un-
supervised machine learning method is applied 
due to sparse resources that are available. For 
each stem-class, we find the longest common 
prefix of all words in the class and define this to 
be the stem of each word in the class. After this, 
for each word in the class, the part that remains 
after the stem is collected as a valid suffix. We 
keep the count of suffixes, i.e., frequency, with 
an expectation that high-frequency suffixes will 
be good candidates for suffix-removal rules.

4.3. Sorting suffixes by frequency. Gener-
ated valid suffixes are sorted by frequency for 
selection of significant suffixes. While highly 

frequent suffixes will likely be useful, suffixes 
of low frequency, e.g., one, should be discarded 
not only to reduce the number of rules, but to 
produce more general rules that do not overfit co-
incidental word overlaps.

4.4. Generation of suffix-rules. We consider 
several way of generating suffix rules and experi-
mentally evaluate each of them. Simple suffix-
removal rules are considered, i.e., the rules are of 
the form s → ε, where ε is an empty string.

4.4a Frequency-based Subsumption Stem-
mer. In the first approach, called frequency-based 
subsumption stemmer, we first select suffixes 
that occur with frequency higher than a given 
threshold. These frequent suffixes are called val-
id suffixes, and they are candidates for the suffix 
removal algorithm. The set of all valid suffixes 
is denoted by Sv. If a valid suffix s1 is a suffix 
of another valid suffix s2, than any word ending 
with suffix s2, also ends with suffix s1, so we say 
that suffix s1 subsumes suffix s2, and write s1 ⊇ s2, 
or we say that s2 is more specific than s1. If two 
valid suffixes can be removed from a word, then 
one subsumes the other one, and the more spe-
cific one is removed. Otherwise a more specific 
affix would never be applied. Additionally, this is 
a principle used in all Porter-style stemmers.

4.4b Greedy Subsumption Stemmer: The 
rules for suffix removal are selected according 
to suffix frequency in descending order, simi-
lar to 4.4a. The additional condition is applied 
by measuring stemming accuracy of the newly 
formed group after each rule. If the accuracy is 
not improved by a certain threshold, the rule is 
not selected.

4.4c Optimal Suffix Stemmer: Presence or 
absence of suffixes can be used in more complex 
ways that in simple suffix removal rules. For ex-
ample, some rules of the Porter stemmer a rule 
are stated as “if a word has suffix s1 and not s2, 
then suffix s3 is removed.” The goal of the opti-
mal suffix stemmer is to explore whether a better 
performance could be achieved by creating such, 
more complex rules, while still using only the 
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suffixes generated from step 2. Such optimiza-
tion problem is not obviously tractable to com-
pute, but we show that it is tractable, and imple-
ment an efficient algorithm to solve it. We say 
that two words w1 and w2 are indistinguishable by 
the set of valid suffixes Sv, and write w1 ≡ sv w2, 
if for each suffix s ∈ Sv, s is or is not suffix of w1 

and w2 in the same time. If two words are indis-
tinguishable, then they are either changed or un-
changed by the same suffix-removal rule in the 
stemming process. Additionally, the relation ≡sv 

is an equivalence relation and it partitions the set 
of words into |Sv| + 1 equivalence classes (or |Sv| 
if ε ∈ Sv). These equivalence classes are impor-
tant in the context of complex suffix rules since 
two words in the same class cannot be separated 
by matching them with valid suffixes; and if two 
words belong to different classes then it is pos-
sible to create a boolean expression over valid-
suffix matching conditions to separate the words. 
Hence, to find the optimal achievable accuracy 
with a set of suffixes Sv, we need to locally opti-
mize each equivalence class by finding the most 
optimal suffix to be removed from each word in 
the class. This can be efficiently performed.

lemmas 47,489
word forms 675,140
word form → lemma pairs 696,263

Table 1: Lexical Resource Statistics

5 Evaluation
5.1 Lexical Morphological Resource

Our processing started from a basic lexical re-
source for Serbian language, which was manual-
ly created and enriched by applying derivational 
rules. We went through a long process of clean-
ing, and the resource still includes some errors. 
To make processing easier, the diacritic Latin let-
ters in Serbian are transcribed into the so-called 
‘dual1’ encoding (e.g., č=cx, ć=cy). The resource 
consists of word → lemma pairs, and the basic 
statistics is shown in Table 1. Distinct part-of-
speech tags are not counted in this statistics. For 

example, in English, one could count work/NN 
(noun) and work/VB (verb) as two different lem-
mas, but we count them as one. This kind of am-
biguity is not very frequent in Serbian.

We can also note that the number of (word 
form, lemma) pairs is larger than the number of 
word forms, but not much larger (≈ 3%). This 
means the Simple Dictionary-based Direct Lem-
matizer (SDDL), described in the previous sec-
tion could be quite accurate, since about 97% 
wordforms map uniquely to one lemma. It can be 
observed that there are about 14 different word 
forms per one lemma on average.

5.2 Simple Dictionary-based Direct
Lemmatizer

The performance of SDDL depends on the 
ambiguity level of the dictionary, i.e., the re-
source. We define ambiguity level of a word w 
as ambiguity(w) = |{l : w →l   l}|, i.e., the number 
of lemmas associated with the word. For unam-
biguous words, i.e., words with ambiguity level 
1, the lemmatizer would give a correct answer, at 
least according to the resource. The distribution 
of ambiguity levels is given in Table 2..

Ambiguity level Number of 
word forms Percentage 

6 1 0.00015 %
5 18 0.0027 %
4 156 0.023 %
3 1566 0.23 %
2 17446 2.58 %
1 655953 97.16 %

Table 2: Ambiguity level distribution
of the word forms in the resource

This implies that, assuming a uniform distri-
bution of words, we could expect an accuracy 
of at least 97% of the SDDL. The most ambigu-
ous word with 6 corresponding lemmas in the 
resource is ‘žute’ (engl. yellow) and its lemmas 
are: žut, žuta, žuteti, žutiti, žutjeti.

Corpus-based Evaluation. In the above esti-
mate we assume uniform distribution of words in 
text, which is not realistic. The words are typical-
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ly distributed according to the Zipf’s law [4]—a 
power distribution law, very different from uni-
form distribution. To make a more realistic eval-
uation we use a text corpus. As a representative 
corpus of the common contemporary language, 
we have chosen a collection of articles from the 
news magazine “Vreme” (engl. “Time”) from the 
period of five years 2001–5. The corpus size is 
44MB and it consists of 6.6 million words.

The first use of the corpus is to evaluate the 
coverage of our resource, i.e., the percentage of 
corpus words that are included in the resource. 
After the first run we found that only 56% of the 
words in the corpus were found in the resource 
with case-sensitive matching. Besides names, 
the words are capitalized at the beginning of a 
sentence and in titles so we found that case-in-
sensitive coverage is 61%. An examination of 
unrecognized words reveals that about 35% of 
them are proper names. Another significant un-
recognized group are conjunctions and preposi-
tions, which are very frequent and happened not 
be included in the resource. The proper names 
are a group that is hard to predict so we can-
not assume that they would be covered by a bet-
ter resource. However, the names follow simi-
lar morphological patterns as common nouns, 
which is an additional evidence that an algorith-
mic approach would be advantageous, and that it 
would generalize better. Within these 61%, 50% 
words in the corpus (49.79% more precisely) are 
unambiguous in the resource (ambiguity(w)=1). 
This is about 50/61 ≈ 82% of recognized words, 
which is a less optimistic evaluation than the 
one obtained for uniform distribution. This im-
plies that SDDL would have accuracy of at least 
50%, and likely not much higher than 61%, as-
suming that some simple strategy for unknown 
words is used.

1 457 (1,1%) 8 3946 (9,5%)
4 1436 (3,4%) 9 1494 (3,6%)
5 1703 (4,1%) 12 3962 (9,6%)
6 1320 (3,2%) 13 2433 (5,8%)
7 11942 (28,7%) 29 547 (1,3%)

31 2633 (6,3%)
32 1481 (3,6%)
33 2872 (6,9%)
34 446 (1,1%)
37 632 (1,5%)

Table 3: Distribution of Stem Class Sizes,
higher than 1%

Before proceeding with evaluation of our 
stemmer-generating method, the lexical resource 
is improved in the following way. The ten most 
frequent word that are not covered by the resource 
are: ‘i’, ‘u’, ‘na’, ‘za’, ‘su’, ‘a’, ‘ne’, ‘od’, ‘sa’, 
and ‘o’, which are very frequent functional words 
and are omitted from the resource simply because 
those part-of-speech tags were not included (con-
junctions: ‘i’, and ‘a’; prepositions: ‘u’, ‘na’, ‘za’, 
‘od’, ‘sa’, and ‘o’; auxiliary verb: ‘su’, and ad-
verb ‘ne’). After manually adding 200 more word- 
lemma pairs, the coverage increased to 85% with 
the 73% unambiguous words from the resource. 
This is a usable accuracy, but the limitations are 
that it requires almost 700,000 wordlemma pairs, 
has no generalization capability, and likely con-
tains some errors evident in the resource.

5.3 Stemmer Evaluation
Step 4.1: Creation of stem-classes. After 

transitive closure, 677,868 unique words from 
the resource are distributed into 41,681 classes, 
giving on average 16.3 words per class. The 
number of words per class varies between 1 and 
307 words per class. The classes with more than 
80 words are very sparse. For example, two larg-
est stem classes have 307 and 283 words. After 
examining them, we see that they are created by 
incorrectly merging two or more proper stem 
classes, likely due to some erroneous word-lem-
ma pairs. The most frequent stem-class size is 7, 
which is 29% of the classes. The distribution of 
class sizes with more than 1% of all stem classes 
is shown in Table 3.

Step 4.2: Generation of stems and suffixes. 
After producing stems and suffixes in this step, 
any empty stems obtained are indicators of in-
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correct stemclasses. In a number of cases it was 
caused by the prefix ‘naj-’, which is used in su-
perlative inflections of adjectives and adverbs. 
As we noted before, the prefixbased derivations 
should not be treated in stemming. As an illustra-
tion, if we are searching a document collection 
for the highest mountain peak in the world, we 
are likely interested in ‘highest’ precisely and not 
‘high’ peaks or comparison ‘higher peak’, even 
though these are conflated in English. Removal 
of prefix ‘naj-’ would cause additional errors 
since it appears as a prefix in non-superlative 
words, such as ‘najamnik’ and ‘najahati’. The 
issue could be resolved by removing the prefix 
‘naj-’ only when matched with the corresponding 
superlative suffixes ‘-ija’, ‘-iji’, and similar. We 
address this problem by separating superlative 
and nonsuperlative stem-classes.

Another source of empty stems are irregu-
lar inflections, such as the plural noun ‘ljudi’ of 
‘čovek’ or ‘čovjek’ and auxiliary verb form ‘ćeš’ 
of ‘biti’. Both of these could be handled by an 
exception list, but we decide to separate them in 
different stem-classes. We assume that an IR user 
would not expect a search term to be expanded 
in this way (e.g., for ‘ljudi’), or auxiliary verbs 
would be removed as stop-words anyway.

The stems of length 1 are suspects of incor-
rect classes, but they were not systematically re-
moved. One example is the word ‘beže’, which 
is a present tense form of verb ‘bežati’ (engl. to 
escape), and the vocative case of the noun ‘beg’ 
(engl. bey), which leads to an erroneous merge of 
two, otherwise correct, stem classes. In the first 
run 650 words produced an empty stem. For all 
of them, we manually fixed the original resource, 
which caused break-up of corresponding stem-
classes and production of non-empty stems. 
Short stems (e.g., length 1) are also frequently 
created by incorrectly merged stem-classes, but 
we hypothesized that it may not be necessary to 
fix them in this experiment, since the later meth-
ods use the most frequent suffixes, which should 
have high reliability. The maximal common pre-

fix method used to generate stems created some 
additional overlap among stem-classes, effec-
tively merging them: 39,289 stems are created, 
1,823 (4.6%) of those were ambiguous in the 
sense that they were associated with more than 
one stem-class. Only 253 had ambiguity level of 
three or more, with the stem ambiguity level de-
creasing quickly when sorted in descending or-
der. The most ambiguous stems are given in the 
list below.

43  ist 18  post 16  samo 14  ekst 
26  rast 18  sat 15  ust 13  zast 

12  ost 7  pos 7  nast
12  konst 7  podst 7  nas

These highly ambiguous stems do not main-
tain meaning of the word, and an improvement 
method for this step is a part of our future work.

Step 4.3: Sorting suffixes by frequency. In 
this step 18,274 suffixes were generated, and the 
top of the sorted list of generated suffixes with 
frequency is given in the table below.

All of these suffixes have linguistic interpre-
tation.

Step 4.4: Generation of Suffix Rules. A di-
rect implementation of evaluation of different 
suffix-rule generation approaches lead to a very 
slow evaluation. An efficient implementation 
with a compact trie (historically also known as 

24833 -e 6495 -ој
22874 -u 6475 -omu
22389 -i 6121 -oga
22184 -a 6118 -og
19475 -om 5929 -ti
17756 -o 5775 -t

16190 ‘’
(empty)

4412 -h
4399 -m

8996 -im 4303 -cyесx
8281 -ama 4289 -cyu
8101 -ih 4273 -le
7573 -te 4272 -la
7472 -ima 4268 -li
6821 -mo 4252 -cyе
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a Patricia trie) with reversed strings significantly 
reduced running time, from 5-6 hours for initial 
experiments to about 5-10 minutes.

(4.4a) Frequency-based Subsumption 
Stemmer. For the frequency-based subsumption 
stemmer, we started with an empty set of valid 
suffixes and incrementally added one rule at the 
time in order determined by rule frequency. Af-
ter each stem the stemming accuracy according 
to our generated stems is measured. It started 
with 2.4% with Sv = ∅ and gradually increased 
to 56.3% with 98 suffix rules, and then gradu-
ally decreased to 14.2% when all 17,839 suffixes 
were included.

(4.4b) Greedy Subsumption Stemmer. In 
the greedy approach, we add rules in the same 
order as 4.4a, but before and after adding each 
suffix we measure accuracies А1 and А2 in the 
number of correct stems. The rule is accepted if 
А2 – А1 > Ө, where Ө is a given parameter, i.e., 
the suffix is accepted only if it improves accura-
cy for more than a given threshold. For example, 
if Ө = 0, then a suffix is accepted only if it does 
not decrease the overall accuracy; if Ө = 1, then 
the number of correct stems must increase by 1 
at least, and so on. The higher Ө parameter is, 
we expect the better generalization by choosing 
less rules that have higher quality, but they may 
decrease performance. The results are shown in 
the following table.

Ө Valid
Suffixes Accuracy

0 9849 74,15
1 8633 74,16
2 3367 73,38
3 1901 72,95
4 1557 72,83
5 1262 72,66
6 1124 72,56
7 1002 72,46
8 933 72,39
9 878 72,32
10 831 72,26
15 673 71,99

20 592 71,78
25 497 71,48
30 453 71,30
35 423 71,16
40 410 71,09
45 380 70,90
50 360 70,76
60 347 70.65
70 319 70.39
80 310 70.29
90 298 70.14
100 294 70.23
150 273 69.87
200 230 68.80
250 218 68.43
300 202 67.77
350 188 67.08
400 180 66.65
450 179 66.59
500 175 66.31
600 131 62.74
700 121 61.82
800 114 61.03
900 87 57.76
1000 85 57.48

Two interesting observations that can be made 
are that the accuracy is much higher than with 
the previous approach, and the accuracy drops 
very initially slowly while the number of rules 
drops quickly, which is another very encouraging 
observation. At the Ө = 7 we obtain 1002 suffix 
rules with accuracy only about 1.7% less than the 
best one. This fits well with our prediction that a 
stemmer for Serbian language would need about 
1000 suffix rules.

(4.4c) Optimal Suffix Stemmer. The accu-
racy of the optimal suffix stemmer is 81.83%. 
This is the upper bound of what can be achieved 
with the obtained set of valid suffixes and the 
corresponding suffix removal rules, when evalu-
ated on the produced set of stems. We can see 
that the greedy approach is not that much lower, 
especially considering the argument that our goal 
should not be to match the optimal accuracy since 
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we would overfit the initial flaws of the lexical 
resources and some incorrect stems produced in 
previously described process.

5.4 Unbiased Evaluation
To evaluate the stemmers in an unbiased way 

we use the news corpus, run the stemmers on a 
sample set of words of the corpus and manually 
judge produced stems. We choose to evaluate two 
stemmers: 4.4c (Optimal Suffix Stemmer) and the 
greedy stemmer (4.4b) with the parameter Ө = 7 
and 1000 generated rules. An interactive program 
reads the words from the corpus in sequence and 
runs both stemmers on them. Since we are more 
interested in words not included in the resource, 
the words that exist in the resource and for which 
the stemmers produce the same stem are ignored. 
Otherwise, the stems are produced for manual 
evaluation with four decisions: only greedy cor-
rect, only optimal correct, both correct, both in-
correct, and ignore. The option ‘ignore’ is used to 
exclude some functional words which are obvi-
ous stop-words and some English words appear-
ing in the corpus. A stem is judged to be correct 
if the original meaning can be clearly predicted 
from the stem (no over-stemming), and it seems 
that the stem covers all morphological variations 
of the lemma (no under-stemming). After evalu-
ating 1000 non-ignored words from the corpus 
(with possible repetitions) the result was: 127 
words with greedy correct only, 90 optimal cor-
rect only, 663 both correct, and 120 none correct. 
These results confirm two of our hypotheses: (1) 
The stemmers produced in the process seem to 
be usable in IR (greedy accuracy 79% and Opti-
mal accuracy 75%); and (2) the greedy approach 
produces not only as good results as the optimal 
stemmer, but generalizes even better (better ac-
curacy) with only 1000 rules.

6 Conclusion and Future Work
In summary, we described and evaluated a 

largely automatic general approach to generat-
ing stemmers for highly-inflectional languages 

with only a few resources. Some limitations in 
the process are discovered as well as opportuni-
ties for further improvement. The final evalua-
tion has shown 79% accuracy on real data for the 
Greedy stemmer, which is even a bit higher than 
the accuracy obtained on the training data, show-
ing a very good generalization capability. Some 
directions for future work are: (1) evaluation on 
more data, (2) inclusion of suffix substitution 
rules instead of just suffix removal rules, and (3) 
inclusion of stem length parameter. With suffix 
substitution rules, the method can be directly ap-
plied to the lemmatizer generation.

1The current official web site for the Porter’s stemmer 
is http://tartarus.org/˜martin/PorterStemmer/, and it is 
the authoritative source for the implementations of the 
original stemmer. A quick test to check authenticity of 
a Porter stemmer implementation is the word ‘agree-
ment’—it is not changed in the original Porter stemmer, 
while some incorrect implementations change it.
2CPAN—Comprehensive Perl Archive Network, http://
cpan.org/, is an open-source repository for Perl pack-
ages.
3http://www.mf.uni-lj.si/ds/new-stemmers.html
4http://snowball.tartarus.org/archives/snowball-dis-
cuss/0722.html
5http://svn.rot13.org/index.cgi/stem-hr
6Source: Snowball mailing list.
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