
41

IN
FO

theca V
ol. 15, N

o. 2,A
pril 2015

Scientific paper

1 Introduction

Computer processing of texts written in natural
languages (known as Natural Language Processing
or NLP) is developing extensively in recent years. Its
development is followed by its integration with other
areas of computer science, such as text mining, in-
formation retrieval, information extraction, machine
translation and others. All of these sub-areas of com-
puting use text written in natural languages as an
input, and process and transform it in different ways.

Textual resources differ in file formats they are
stored in. Consequently, they must be processed
in different ways. Ordinary text files (.TXT) and
text files collected from the Internet in the form
of hypertext (.HTML) will not be processed in the
same manner. But despite the fact that they have
different structures, formats such as .TXT, .HTML
or .XML can be considered as text files, in the sense
that the sequence of characters representing the
text in them is continuous (undisturbed). It should
be taken into account that HTML and XML files

Abstract: The use of PDF documents in Natural Language
Processing (NLP) became an almost daily activity for researchers
in the field of computer linguistics and alike. Extracting plain
text from PDF documents, with existing software tools, leads
to severe distortion of sentence and paragraph structures,
which is a huge problem for linguistically oriented research.
In this paper, we present a novel algorithm for recovering
sentences and paragraphs from PDF documents, called Sentence
Recovery Algorithm or SR algorithm. The algorithm takes
plain text extracted from a PDF document as an input, and
tends to recover sentences from it. It takes into account cases
like misinterpreted end of line, interruption of a sentence by
tables or figures, problems occurred by hyphenation and so
on. Beside describing and evaluating the algorithm, we present
a use case for processing scientific articles originally given
in PDF format, implemented in Java programming language.

Keywords: Natural Language Processing, Language Re-
sources, Java programming, PDF processing

An Algorithm for Sentence Recovery from PDF Files

UDC 81'322.2:004.912

Vesna Pajić
svesna@agrif.bg.ac.rs
University of Belgrade,
Faculty of Agriculture

Staša Vujičić Stanković
stasa@matf.bg.ac.rs
University of Belgrade,
Faculty of Mathematics

Miloš Pajić
paja@agrif.bg.ac.rs
University of Belgrade,
Faculty of Agriculture

Date of Submission: � 27 December 2014
Date of Acceptance: � 18 April 2015

42

Infotheca Vol. 15, No. 2, April 2015

IN
FO

th
ec

a

have additional parts of text related to mark-up
tags, and not natural language. However, clearly
defined rules for insertion of HTML/XML tags allow
their easy removal. Therefore, we consider that,
from the point of NLP processing, these formats
are equivalent. Nowadays, there is a number of
software tools developed for efficient processing
of these types of files. Some of them are UNITEX
(Paumier, 2011), NooJ (Silberztein, 2003), GATE
(Cunningham et al. 2002), different wrappers
(Muslea et al. 1999; Kushmerick 2000.; Liu et al.
2000; Baumgartner et al. 2001.) and the like.

However, in recent years, especially on the web,
PDF arises as a format for electronic document
exchange. As an increasing number of researchers
are using the web as a corpus, they are all faced
with the processing of textual data in PDF format
at some point. Unfortunately, processing of docu-
ments in PDF format using available tools suf-
fers from numerous drawbacks. One of the main
problems for linguistic processing of PDF text is
violated original structure of sentence and text,
i.e. sentence may be interrupted with the end of
line character or some other objects. In this pa-
per we present a new method for the automatic
extraction of text files from PDF format into TXT
format, which provides an opportunity to overcome
the sentence’s structure problem and allows fur-
ther processing of texts by traditional methods
and NLP tools.

In Section 2we describe the structure of PDF
files, present some of the tools for converting
PDF documents to text documents and describe
the problems that arise in this process, from lin-
guistic point of view. One of the biggest problems
is violation of original sentence structure. In Sec-
tion 3we present an algorithm for recovering the
sentence structure to the level that allows the
further processing of the text (SR algorithm).
The implementation of this method in the Java
programming language and an example of use
are given in Section 4. In Section 5we evaluate
the algorithm, showing it is very good from the
standpoint of NLP. Finally, the conclusion has
been given, together with some directives for
future studies and activities in order to solve the
presented problem.

2 Transforming PDF files into
TXT files – state of the art

2.1 Portable Document Format
(PDF)

Portable Document Format (PDF) is a file for-
mat invented by Adobe Systems1 with the inten-
tion to represent documents independently of
software and hardware platform. It is designed
to preserve the original look of the document, i.e.
the document will look the same on the screen
and in print, regardless of what kind of comput-
er or printer someone is using. Moreover, PDF
files are highly compressed, allowing complex
information to be downloaded from the web ef-
ficiently. As such, PDF became an open standard
for electronic document exchange, maintained
by the International Organization for Standard-
ization (ISO)2.

The structure and syntax of a PDF file is defined
very strictly. A PDF document is a data structure
composed of a small set of basic types of data
objects, which are used to represent components
of a PDF document: pages, fonts, annotations,
and so forth. At the most fundamental level, a
PDF file is a sequence of bytes. These bytes can
be grouped according to the specific syntax rules.
One or more groups are assembled to form higher
level syntactic entities (objects), representing
content of the document but also the way this
content should be positioned and rendered on
the pages of the document. For more details
about PDF specification, we suggest reading the
official reference.

Here, we are giving one example of PDF file
content, which illustrates how PDF files store in-
formation about text. The text “ABC” is placed 10
inches from the bottom of the page and 4 inches
from the left edge, using 12-point Helvetica.
Corresponding part of the PDF document will
look as follows:

BT
/F13 12 Tf
288 720 Td
(ABC) Tj
ET

1 http://www.adobe.com/devnet/pdf/pdf_reference.html
2 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51502

43

Pajić, V. et al. "An Algorithm for Sentence Recovery from PDF Files", scientific paper, page 41-54

The five lines of this example perform these
steps:

•• Line 1 - Begin a text object.

•• Line 2 - Set the font and font size,
installing them as parameters in the
text state. In this case, the font resource
identified by the name F13 specifies the
font externally known as Helvetica.

•• Line 3 - Specify a starting position on
the page, setting parameters in the text
object.

•• Line 4 - Paint the glyphs for a string of
characters at that position.

•• Line 5 - End the text object.

As seen in the example, there is much more
information about a text string stored in the PDF
document than it is needed for a linguistically
oriented processing of the text. The majorpart
of the information is concerning visual repre-
sentation of the text, which is often irrelevant
for NLP researches.

Therefore, in order to efficiently process a
PDF document, one must get to know PDF syn-
tax very well or rely on some existing software
for converting PDF to TXT.

2.2 Software for converting PDF
to TXT

There are a lot of software tools for managing
PDF files and most of them have an option to
convert PDF files to plain text. With no inten-
tion to recommend any of them, we will here
mention a few, just to illustrate the state-of-
the-art in the field.

One of the most important is the Adobe’s
official software for managing PDF files. The
current version is called Adobe Acrobat XI3. It
allows editing and creating PDF documents,
merging and combining files, protecting docu-
ments and converting PDFs to other formats,

such as .TXT, .DOC, .HTML and others. ABBYY
PDF Transformer 3.04 is anothercommercial soft-
ware, with pretty much the same capabilities. It
is a multilingual tool for easy converting of PDF
file of any type into editable and searchable
formats with the original layout and format-
ting retained. A number of free online tools are
available on the web, such as SomePDF5, Con-
vertPDF6, ConvertPDFtoTXT7 and others. There
is also a Google’s tool for viewing PDF files as
plain HTML. Maybe the most successful tool that
converts PDF is GATE’s module for converting
PDF to HTML. Although GATE does not have
an option to convert to TXT directly, correctly
recognized paragraphs in HTML format could
be processed easily as text.

For developers, there are APIs for almost
every programming language, which helps in
managing PDF files from programming code.
The PDFClown8 and IcePDF9 are worth mention-
ing, since they are highly functional, bug-free,
good documented and easy to use. PDF Clown
is a free open source API, written as a class li-
brary in multiple languages (Java™ 6 and C#/.
NET 4.0). IcePDF is an open source Java PDF
engine for viewing, printing, and manipulating
PDF documents. It can be used as a standalone
open source Java PDF viewer, or can be easily
embedded into any Java application. Beyond PDF
document rendering, it can be used for PDF to
image conversion, PDF search or PDF text and/
or image extraction.

No matter which one of software tools is used
for conversion, same problems occur from a lin-
guistics perspective. Each tool will disrupt the
structure of sentences and paragraphs during
the conversion of PDF files. The reason for this
is not the imperfection of existing tools, but the
nature of the PDF document, which primarily
stores visual components necessary to provide
the same layout of the document, regardless
of computer systems and components used by
the user.

3 http://www.adobe.com/rs/products/acrobat.html
4 http://pdftransformer.abbyy.com/
5 http://download.cnet.com/Some-PDF-to-Txt-Converter/3000-2079_4-10836740.html
6 http://convertonlinefree.com/PDFToTXTEN.aspx
7 http://www.convertpdftotext.net/
8 http://www.stefanochizzolini.it/en/projects/clown/index.html
9 http://www.icesoft.org/java/projects/ICEpdf/overview.jsf

44

Infotheca Vol. 15, No. 2, April 2015

IN
FO

th
ec

a

2.3 The conversion problems
Let us look at the process of converting docu-

ment from PDF to TXT format more closely. As we
mentioned in Section 2.2, this process is similar
regardless the software tool used. The input of a
conversion process is a document in PDF format
(denoted as File.PDF), and the output is a file in
TXT format created by a software for conversion
(denoted as File.TXT). In the following examples
we use IcePDF for conversion, if not stated oth-
erwise. There are some issues of the conversion
process, which can be viewed as problems for
linguistically oriented processing.

2.3.1 Inserting the end-of-line
(EOL)
The end-of-line (EOL) is one or more charac-

ters, used to indicate the end of a line or a para-
graph in textual files. Which character will be
used for EOL depends on the software platform.
On Windows OS, carriage return (CR) followed
by line feed (LF) is used (also denoted as ‘\r\n’ or

0x0D0A). For visual representation, when needed,
the pilcrow character (¶) is used.

In most cases of PDF to TXT conversion, the
EOL characters are inserted at positions where
a line of text visually breaks, not only where a
paragraph actually ends. In that way, informa-
tion about paragraphs and sentences is lost; a
paragraph from File.PDF (Figure 1) is converted
into several paragraphs (Figure 2) in File.TXT (a
paragraph per each visual line of the text).

2.3.2 Interrupting a paragraph
with an object
PDF files often have a lot of different objects

inserted in the text in different ways. Those can
be tables, figures, graphs, formulas, page objects
(header, footer, page numbers etc.) and so on. If
there is an object (as a table, figure, header and
so on) inserted in a paragraph in File.PDF (Figure
3), the text sequence in File.TXT is broken with
some additional lines (Figure 4), which are the
products of converting the object.

Figure 1. An excerpt from the PDF document (the text is a part
of Journal of Agricultural Engineering, Volume 4, 2012).

Figure 2. The text marked in Figure 1after converting to the TXT format;
the hidden characters, such as space and end of paragraph are shown.

45

Pajić, V. et al. "An Algorithm for Sentence Recovery from PDF Files", scientific paper, page 41-54

Figure 4. The converted text.

2.3.3 The hyphenation problem
Hyphenation is a process of inserting hyphen

character (“-“) into words, usually between two
syllables, in order to break a line of text. If words

in File.PDF are hyphenated, then those words will
not convert into adequate word forms in File.TXT;
for example, if the word “metabolic” is hyphenated
as “meta-bolic”, it will be converted into sequence
“meta-“, EOL character and “bolic”. The simplest
approach would be to remove EOL character and
character “-“, and to produce one word (“meta-
bolic”). But there are cases like “amino-glycosides”
where hyphen character should remain.

2.3.4 The wrong character
interpretation

Since PDF format is focused on displaying docu-
ments and preserving the same look over different
platforms, the common problem during conver-
sion is inadequate character representation; this
problem is more obvious when processing texts
with non-Latin characters. Here we need to men-
tion that the following problems occurred while
using ABBYY PDF Transformer, while IcePDF
converted characters correctly. Nevertheless, it
is important to emphasize this problem, since a
lot of researchers will face it at some point.

For example, the most frequent problems we
noted are changing Cyrillic letter зwith the glyph

Figure 3. The end of one and the beginning of the next page;
the paragraph is split by the footnote and the page header.

46

Infotheca Vol. 15, No. 2, April 2015

IN
FO

th
ec

a

3, Cyrillic letter иwith Latin letter u (the italic form
of letter иis и), Cyrillic letter у with Latin letter y.
Furthermore, there is a problem with converting
two characters, such as fl into one glyph fl (as in
“single flagellum”) and many others. Commonly,
it is very hard to notice these kinds of misinter-
pretations of characters in the first place, since
incorrectly converted characters look the same.

3 The Algorithm for Sentence
Recovery (SR Algorithm)

In majority of NLP techniques and methods,
a sentence is a basic unit of text processing.
Therefore, the format of file obtained after con-
version from PDF to TXT (we called it File.TXT)
is inadequate for further linguistic processing
and analyzing. Since PDF documents increas-
ingly dominate as a way of storing documents,
especially on the WWW, the additional process-
ing and preparation of those files is necessary in
order to process them with NLP tools. This job can
be time consuming if done by humans, because
collections of PDF documents are usually huge.

Having the same problems in our research and
trying to overcome them, we developed an algo-
rithm that automates the process of preparing
the texts for further processing. It decreases the
need for human engagement in the preparation
process. We have adapted the algorithm so it can
be used in many similar situations by other re-
searchers as well. It is simple enough to be widely
used by others, and precise enough to be used in
NLP processing with high reliability. Moreover,
the algorithm itself is language independent,
since it is based on statistical properties of text.

The algorithm is primarily developed for process-
ing documents that consist mostly of text, having
the form similar as printed documents such as
scientific papers, books or newspapers. Although
they can contain different graphical objects (pho-
tos, graphs, tables...), the information in the form
of natural language text dominates in these docu-
ments. Moreover, the text is organized into para-
graphs, with sporadically inserted headings and
titles. The rest of PDF files, such as PPT slides or
some catalogues with a lot of images, cannot be
processed with SR algorithm efficiently.

3.1 The basic flow of the
SR Algorithm
The input of the SR algorithm is a text obtained

after initial conversion of a textual document from
PDF to TXT format, performed by any existing soft-
ware. The properties of such texts are already de-
scribed in previous sections, but the main property
is that the structure of sentences and paragraphs
is disrupted in some way, so the processing of the
text is not possible with NLP tools.

Since rhetorical structure of the text is vio-
lated, the input text is seen as a sequence of
text lines. SR algorithm tries to identify each
line as one of the following:

•• a heading line or part of a heading;

•• a beginning, a central part or an ending of
a text paragraph;

•• a caption of an object (table caption,
figure caption and so on);

•• a part of a converted object (for example,
parts of a table or converted formulas);

•• a page element, such as a page header,
page numbers and so on.

After identification of a line, SR algorithm takes
some actions based on the identified form. Those
actions can vary depending on the final purpose
of text processing. For example, if someone is
interested only in studying the language, then
maybe tables are irrelevant to them and they can
be omitted from the output file. On the other
hand, if someone is doing information extrac-
tion from the text, the tables may have crucial
significance, and they will remain in the output
file, so they can be further processed.

The basic form of SR algorithm, presented in
this paper, will do the following:

•• a heading line or subsequent heading lines
will be converted into one paragraph;

•• EOL characters will be removed from
the lines recognized as a beginning or a
central part of a paragraph, with special
processing of hyphenated words;

•• captions of objects will remain as separate
paragraphs;

•• parts of converted objects will be removed
from the output file;

47

Pajić, V. et al. "An Algorithm for Sentence Recovery from PDF Files", scientific paper, page 41-54

•• page elements will be removed from the
output file.

Here follows an example of an input text and
its form after the processing. Figure 5 shows an
excerpt from a PDF file. The further processing
example focuses on the part of the text with gray
frame around it. It consists of one heading, a
paragraph spreading across two pages with a
footnote inserted, and one subheading.

After converting the PDF file with conventional
software (in this particular case we used IcePDF,
because of its properties discussed in 2.3.4), the
11 text lines shown on Figure 6 are obtained.

Figure 6. The text after initial converting
from PDF to TXT; hidden characters (EOL

and spaces) are shown to demonstrate
the real content of the text.

Ideally, the SR algorithm should process these
lines in the following manner:

•• Lines 1 and 2 should be recognized as a
heading, and merged into one paragraph
(we will do this by analyzing the last
characters of lines, the case of the letters,
and the length of the lines);

•• Lines 3, 4, and 5 should be recognized as
one paragraph and merged together; the
EOL characters will be removed from the
end of lines and spaces will be inserted
instead;

•• Line 6, containing only spaces and EOL
should be removed totally (we will do
this by determining that the previous
paragraph have not finished yet, so the
Line 6 must be a part of some inserted
object – a footnote in this case);

•• Line 7 should be recognized as a footnote
and removed entirely (we will do this by
analyzing its length);

•• Line 8, 9 and 10 should be recognized as
the rest of the previous paragraph and
merged together with spaces, removing
EOL characters, except in the Line 10,
where the paragraph actually ends;

•• Line 11 should be recognized as a heading
and remain as it is, i.e. one paragraph.

After processing, the text should look as in
Figure 7.

Figure 5. A part of a PDF document (REF); the processing of
the text with the gray frame around it will be explained.

48

Infotheca Vol. 15, No. 2, April 2015

IN
FO

th
ec

a

Figure 7. The text after processing with
SR algorithm; hidden characters (EOL
and spaces) are shown to demonstrate

the real content of the text.

3.2. Some assumptions
During our research we processed a number of

PDF files, mostly scientific articles and encyclope-
dia texts. Since they are primarily made for paper
printing, they all have the similar form and some
similar features. Those features helped a lot in de-
signing the algorithm. Therefore, we retained them
as assumptions a document must satisfy in order
to use SR algorithm for its successful processing.
The processing with SR algorithm is possible for
documents that do not satisfy these conditions,
but with decreased overall efficiency and accuracy.

The assumptions are:

1. The document consists mostly of text,
organized into paragraphs and headings,
with objects only sporadically inserted.

2. Text paragraphs that are not headings
have the same font size when displayed,
so text lines belonging to paragraph have
approximately equal numbers of characters
in length in most of the document. This
length corresponds to the length of one
column of text in a document.

3. Headings can be distinguished from the
rest of the text, not only by formatting in
the original document, but also by other
properties such as ALL CAPS, Title Case or
having a new line before and after.

4. Headings are mainly shorter than paragraph
lines, i.e. they have fewer characters than a
line in a text paragraph.

Based on assumption 2, we analyzed the length
of text lines in a document. Although documents
can vary in formats, texts such as scientific ar-
ticles, newspapers articles or books will have
similar distribution of lengths of text lines. As
an example, the distribution of three different
documents is presented in Figure 8a, 8b, and 8c.

Figure 8Distribution of the number of
lines having different length; vertical

axis represents number of text lines in a
document and horizontal axis represents
number of characters per line; 8.a and 8.b

represent distributions of two different
one column documents; 8.c represents the
distribution of a two columns document.

The documents whose distribution is shown in
Figures 8.a and 8.b are one column text documents
and document whose distribution is shown in Fig-
ures 8.c is a two column text document. During
processing a number of documents (examples
given here show this as well), we observed that
the most of the lines will be distributed around

49

Pajić, V. et al. "An Algorithm for Sentence Recovery from PDF Files", scientific paper, page 41-54

two values. The first of them will be in the left
side of the graph, near zero length, and it can be
treated as a short line mean. It is more obvious
in the case of first two documents and it inflects
existence of many text lines with length 0 or less
than 10 (these are usually empty lines, parts of
converted objects such as tables, or lines con-
taining just a page number). The second value
will be positioned in the right side of the distri-
bution graph and this value represents the mean
of long lines.

This second value is of great importance for SR
algorithm, since it describes the length of lines
belonging to a text paragraph, i.e. the width of
the text column. We will call it here columnwidth
(CW) value. CW value will vary among different
documents depending on a page size of a docu-
ment, its margins or font size. For example, just
by looking in histograms given in Figure 8, we can
observe that the document represented in Fig-
ure 8.a has CW value around 85 characters, and
the document from Figure 8.b has CW around 88
characters. CW value for the third example docu-
ment is around 65, indicating that this document
has narrower columns than the first two (this was
due to splitting text into two columns on a page).

3.3 Calculating CW value
SR algorithm uses CW value for deciding if a

text line should be a part of a text paragraph or
a heading. Since it differs for different docu-
ments, it is necessary to calculate CW value for
each document being processed.

A text document being processed with SR al-
gorithm, as we already showed, can be seen as a
sequence or an array of text lines. In that man-
ner, we can represent a document D as D={t

i
, i

=1..|D|}, where |D| is a number of text lines in the
document D and t

i
is a text line. Each line t

i
has

its length, i.e. the numbers of characters in the
line, without final EOL. We will denote this length
as l(t

i
). Let m be max

D
l(t

i
), that is the maximum

length of lines in a document.
A distribution of line lengths (DL) will be an ar-

ray of integers DL = {x
j
N| j=0…m}, such that there

is x
j
lines in the document having the length j (Fig-

ure 8). As showed in Section 3.2, DL has a bimodal
distribution and we need to find its right mode.

We first calculate the average length lavg of all

lines in a document as

.
This average line length is important because if

we split DL histogram with lavg, the CW value will
remain in the right part of histogram. Then, we will
calculate CW as a length that maximum number
of lines in the right part of the histogram have:

CW = {i | x
i
=max{x

j
| j ≥ l

avg
}}.

If we calculate CW with the above formula,
documents represented in Figure 8 will have CW
values 85, 83 and 68 respectively.

3.4 The design and schema of
SR Algorithm
The main algorithm’s task is to recover sentences

that are violated during conversion. Therefore,
keeping or merging together parts of the text
that contain whole sentences is essential, i.e. a
sentence should not be split in two by EOL charac-
ter. It would be ideally to transform a part of the
text that represents a paragraph in original PDF
document into one paragraph in final TXT file,
but it is possible that SR algorithm transforms it
into two or more paragraphs. We will not consider
this as an error, as long as each sentence begins
and ends in the same paragraph, i.e. there are
no sentence that spreads across two paragraphs.

In the light of this, the algorithm distinguishes
three main types of input text lines: empty lines
(EL), containing only a zero or more spaces and
EOL character; finished lines (FL), ending with
one of the character from the set F={. , ?, !} fol-
lowed by EOL: and unfinished lines (UL), not
ending with one of the character from the set
F={. , ?, !} and EOL.

Processing of EL and FL is trivial; EL will be
deleted from the output file and the algorithm
will add EOL character at the end of FL. The UL
lines, on the other hand, need to be processed
and analyzed for several possibilities (whether
they are a part of a heading, a paragraph or a
converted object).

The basic flow of SR algorithm is shown in
Figure 9. While reading lines from the file, the

50

Infotheca Vol. 15, No. 2, April 2015

IN
FO

th
ec

a

algorithm keeps track of a paragraph, i.e. it sets
the boolean value par to TRUE when a paragraph
starts and to FALSE, when the paragraph ends.
This value is important for the analysis of UL lines.

The analysis of UL lines (denoted as
Analyze(L,CW,par)) is shown in Figure 10. It
is based on comparing the length of an UL line
with the CW value. Depending on the structure
of a document (whether it is a one column or a
two column text), line lengths belonging to text
paragraphs differ in more or less number of
characters. The initial algorithm is designed to
tolerate up to 10% of CW value; for example, if
CW value is 85 characters, lines having the length
between 77 and 93 characters will be a part of
a text paragraph. This value can be changed in
order to better reflect the structure of a docu-
ment, if needed. Then, the comparison result
indicates whether an UL line is a part of a text
paragraph or not.

It is important to notice here that the analysis
of UL lines depends also on the value par, i.e.
whether a paragraph has already started or not.
In that way, the algorithm can distinguish a head-
ing from a converted object line, since heading
cannot be inserted into a paragraph. If titles and
headings have additional properties (for exam-
ple, they are written in Title Case or ALL CAPS),
the additional processing can be done in order
to determine if some line belongs to a heading.

The processing of hyphenated words can be
done in a primitive way, just by deleting the end-
ing hyphen (“-“), and merging with next line. If
some additional resources are available to the
user, such as lexicons, electronic dictionaries or
so, it is possible to deal with hyphenated words
in a more sophisticated manner, where the algo-
rithm could distinguish a hyphenated word from
a compound word. Here, we used the first way of
dealing with hyphens.

Start SR

Read TXT document D

Calculate CW for D;
par = false;

end of file D?

N
o

Read line L

No

is L empty?

No

is L finished?

Analyze (L,CW, par)

Add EOL to L;
par = false

Write L to output file
D_recovered

Yes

Yes

Yes
D_recovered

End

Figure 9. The basic flow schema of the SR algorithm.

51

Pajić, V. et al. "An Algorithm for Sentence Recovery from PDF Files", scientific paper, page 41-54

4 Use case – A Java
implementation example

During our research, we used SR algorithm
several times, processing different types of docu-
ments, from scientific articles to novels. For that
purposes, we create a Java class, called SentenceRe-
covery, which implements SR algorithm. Since we
had a lot of PDF documents already converted to
TXT with some other tools, the SentenceRecovery
class for now serves only as a standalone class,
but it can be re-designed and integrated as an ex-
tension of IcePDF classes for processing PDF file.

The members of SentenceRecovery class are shown
on Figure 11. The object attribute linesis an array
of strings, containing lines from a document that
need to be processed (EL, FL and UL lines). The
indicator par is used to keep track of a paragraph,
whether it has started and is (or is not) finished
yet. The object attribute CW keeps the CW value
of a document. The variable eps represents the
allowed deviation from CW value. The default
value for eps is 10%. The object attribute out-
Tekststores the document text after processing.

Initially, after creating an object of

SentenceRecovery class, the first step is to popu-
late array lines. It is usually done by reading a file
containing a document and method readLines()
is used for that purpose. Then, it is necessary to
calculate the CW value for the document using
method calculateCW(). The both methods are
called within the constructor of the class.

Figure 11. Members of
SentenceRecovery class.

Start Analyze(L,CW, par)

is length(L) ~ CW?
Yes No

par

par

par=true; Yes

L, par

No L = empty string

Add EOL to L

Yes

No

Process L if hyphenated

Figure 10. The analysis of UL lines

52

Infotheca Vol. 15, No. 2, April 2015

IN
FO

th
ec

a

Methods SRalgorithm() and analyze() are direct
implementations of algorithms presented already
in Section 3.4 (Figures 9 and 10).

Here is an example of Java code that uses Sen-
tenceRecovery class:

File dir = new File(someDir);
File[] files = dir.listFiles();
for (File f:files){

SentenceRecoverysr = new
SentenceRecovery(f);

try{
FileOutputStream out =

newFileOutputStream(f.
getAbsolutePath() + “._SRalg”);

out.write(sr.outText.getBytes());
out.close();

} catch (Exception e) {
e.printStackTrace();
System.out.println(sr.outTekst);

}
}

The above code takes a list of files from a di-
rectory and generates recovered text for each of
them. The text is then saved in a new file within
the same directory. In that way, with just a few
lines of code, a number of files can be processed.

5 Experimental evaluation and
the analysis of results

In order to test and evaluate the SR algorithm,
we conducted several experiments. The experi-
ments were designed taking into account some
previously spotted or assumed setbacks. The
most important thing was to evaluate efficiency
of correctly added EOL characters.

The analysis of lines and decision whether to
put an EOL to the end of a line or not depends
on the structure of documents. Therefore, we
processed three different types of documents,
each in the same way, and compared the results.
The test documents were a scientific journal with
one column text, a scientific journal with two
columns text and a novel.

The first experiment was on comparing our re-
sults with the results obtained from another soft-
ware tool that tries to determine the beginning

and the ending of paragraphs in PDF text. The
second experimentwas ondetermining the opti-
mal eps value, used for comparing a length of a
line with CW value.

5.1. Comparison with existing
software
There is a lot of software tools for convert-

ing PDF file to TXT format (or similar, such as
HTML or XML). However, not so many of them
try to recover rhetorical structure of documents.
Instead, focusing just on visual aspects, they all
embed EOL characters at the visual end of a line,
breaking the structure of sentences in that way.

We found that, among common tools having
the capability to process PDF files, only GATE
has some sort of sentence/paragraph recovery.
Although the GATE as well inserts EOL charac-
ters at positions where lines visually break, it also
tries to recognize the beginning and the ending of
paragraphs and inserts tags <p> and </p> at that
positions. Therefore, we chose GATE as software
for compare with.

In order to decrease the influence of docu-
ment structure on the converting process, we
processed documents with three different struc-
tures. The first document is a scientific journal
with one column text, the second is a scientific
journal with two columns text and the third is
a novel. The first two documents have more
headings comparing with the third. Moreover,
in the first two documents text paragraphs are
often split in two by different objects such as
tables, figure or math formulas, while there are
no objects in the third document. Instead, the
third document has a lot of short paragraphs
that are parts of dialogues.

As already mentioned in Section 3.4, the basic
task was to preserve the structure of sentenc-
es, that is, not to have a sentence that spreads
across two paragraphs. The main purpose of our
research was to prepare texts for further analy-
sis with linguistically oriented software. Since
these kinds of software tool use a sentence as a
unit for processing, we analyzed results based on
the number of broken sentences that remained
after processing. The results of the comparison
are presented in Table 1. Both, absolute and rela-
tive counts are given.

53

Pajić, V. et al. "An Algorithm for Sentence Recovery from PDF Files", scientific paper, page 41-54

Document struc-
ture

Tool for recover-
ing text

Sentences that re-
mained broken after

processing
Total count %

One column sci-
entific journal

GATE 10 10%
SR algorithm 3 3%

Two column sci-
entific journal

GATE 12 15%
SR algorithm 6 8%

Novel
GATE 323 23%

SR algorithm 0 0%

Table 1. The results of performance comparison
between SR algorithm and the GATE

5.2 Experimenting with eps
value
The eps value is used in SR algorithm as an

allowed deviation from CW value, i.e. it repre-
sents the number of characters a line from a text
paragraph can differ from the average paragraph
length. Its default value in SR algorithm is 0.1,
which is determined empirically.We tried to ex-
periment with this value and to see if there is a
significant difference in efficiency.

Based on the design of the SR algorithm, it is
clear that increasing the eps value will result in
higher tolerance of a line length, so there will be
less cases in which a UL line will be incorrectly
recognized as either an embedded object (and
thereforedeleted) or an end of the paragraph
(and therefore split across two paragraphs). On
the other hand, some long headings will be rec-
ognized as parts of text paragraphs, so it is pos-
sible to have some text sequences with improper
syntax and semantics. Decreasing the eps value
will have opposite effects.

We used values 0.3, 0.1 and 0.05 for testing.
The testing was conducted on several different
documents, with different rhetorical structures.
Here are some conclusions and recommendations
based on them.

For processing texts such as novels, where the
main text is written in one column and is not

interrupted with objects such as tables, foot-
notes, images and alike, the eps value should be
increased to 0.3, especially if the headings are
not frequent in the text and are relatively short
comparing to the rest of the text.

For processing texts such as journal articles or
encyclopedias, the eps value should be smaller, de-
pending on the structure of the text. If the text is
written in two or three columns, the differences in a
number of characters per line are smaller between
the lines, so the eps value should be decreased to 0.05.

6 Conclusion and future work

The presented SR algorithm and its implemen-
tation have a practical application in linguistically
oriented research and text processing. Research-
ers can have a clear benefit from the algorithm,
since it decreases significantly the amount of time
needed for pre-processing tasks. Although it has
minor flaws, especially when dealing with a text
with lot of inserted objects, it still can be of help
and process correctly some part of documents,
leaving the less for researchers to process by hand.

The next few steps of its development will be
the implementation of the algorithm in a more
user-friendly environment and its integration
with existing language resources, such as elec-
tronic dictionaries, lexicons and grammars. These
will provide an opportunity to NLP researchers
to process PDF documents in a simplified man-
ner, through user friendly GUI, but with more
sophisticated level of classifying the text lines
and recovering sentences. One such project is a
PDF corpora creator, which is currently under de-
velopment, as a part of this research.

Acknowledgements
This paper is the result of the research within

the project 178006 financed by The Ministry of
Science, Republic of Serbia.

References

Baumgartner, Robert., Sergio Flesca and Georg
Gottlob. “Visual Web Information Extraction
with Lixto”. In Proceedings of the 27th International

Conference on Very Large Databases VLDB ‘01, 119-128.
San Francisco: Morgan Kaufmann Publishers, 2001.

54

Infotheca Vol. 15, No. 2, April 2015

Cunningham, Hamish, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. “GATE:
A Framework and Graphical Development
Environment for Robust NLP Tools and
Applications.” In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics.
Philadelphia, 2002.

Kushmerick, N. “Wrapper induction: Efficiency
and expressiveness.” Artificial Intelligence, 118, 1-2
(2000): 15–68.

Liu, L., C. Pu and W. Han. “XWRAP : an XML-
enabled Wrapper Construction System for Web
Information Sources.” In Proceedings of 16th
International Conference on Data Engineering, 611–621.
New Jersey: IEEE, 2000.

Muslea, Ion, Steve Minton and Craig Knoblock.
“A hierarchical approach to wrapper induction.”
In Proceedings of the third annual conference on
Autonomous Agents: Agents’99, 190–197. Seattle:
ACM Press, 1999.

Paumier, S. “Unitex 2.1 User Manual”. Université
de Marne-la-Vallée, http://www-igm.univ-mlv.
fr/~unitex/UnitexManual2.1.pdf

Silberztein, Max. “NooJ manual”. Available at http://
www.nooj4nlp.net/

