
INFOtheca, № 2, vol XI, December 2010 21

**shoom013@gmail.com

SCIENTIFIC PAPER UDC 004.912:811.163.41’322

TAGGERS APPLIED ON TEXTS IN SERBIAN*

Zoran Popović**
Hemofarm, STADA

Abstract: This paper provides a comparative overview of existing language tools based
on taggers and machine learning methods, with practical tests and results about differ-
ent taggers applied on texts in Serbian. For that purpose some already prepared anno-
tated corpora were used, and 10-fold cross validation was used as the testing framework
with a specially devised and developed environment of automated testing based on unix
scripting (bash, perl, awk) – TnT has shown best performance, while Tree Tagger and
SVMTool taggers have shown somewhat better performance in special cases. A pos-
sibility of combining different tagging methods and tools (programs) and integration
with other NLP environments opens a wide area for further investigations and experi-
ments about these solutions.

Keywords: tagging, tagger, PoS, machine learning, NLP, Computational Linguistics,
CL

*This paper overviews the results presented in the Master Thesis submitted at the Faculty of
Mathematics, University of Belgrade

INFOtheca, № 2, vol XI, December 201022

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

1. Introduction – two paradigms of
Computational Linguistics

NLP (Natural Language Processing) as an area
of Computational Linguistics usually implies
very complex processes in terms of computabil-
ity and time needed for the processing. It consists
of phases such as lexical analysis (segmentation
and tokenization of input speech or text, which
starts with finding beginnings and ends of sen-
tences or words, and detecting general lexical
categories – future lexemes or tokens: numbers,
punctuation characters, words, HTML tags, and
similar), morpho-syntactic analysis (structure of
a word, sentence or text), and finally, semantic
analysis or even pragmatic analysis. Parsers,
programs that do syntax analysis, have a highly
complex task to cover all the rules and properties
of a natural language. The traditional approach
is “top-down”, where with this complex analysis
in a conjoint process one also gets more simple
properties like lexical properties. The goal and
basic result of the analysis are structures and
grammatical rules like formal grammar rules of
Noam Chomsky (syntax tree of a sentence). This
approach is aligned with the unfulfilled goal of
describing a whole natural language with an ap-
propriate first-order predicate calculus theory.

The second quantitative approach to these
problems which fits more with a reverse (“bot-
tom-up”) approach in which the process starts
with efficient and fast algorithms of statistical
nature which are not exact in the former tradi-
tional sense and which are used for more simple
lexical tasks, gave unexpectedly good results and
significant contributions to new NLP solutions.
A class of such programs, called taggers, is con-
cerned about discovering categories of words in
a sentence. These programs put simpler, for each
word in a text based upon its morphological, syn-
tactical and other roles, associate the word with
an appropriate tag which describes association
with subclasses of lexical classes like: nouns,
pronouns, verbs, prepositions, etc. The number

of these subclasses and their categories can be
extensively large if other properties of words are
also taken into account: gender, number, person,
case, and similar. Their number is determined by
the complexity of a given language model built
in that way, but also by the language itself. Some-
where during the 80-ties first practical results of
European researchers with CLAWS program
(Leech 1987), which is partly based on the Hid-
den Markov Model (HMM), have turned further
interest for these and similar problems, and also
specially for taggers and further development of
the statistical NLP, and for the application of ma-
chine learning in NLP.

These two approaches represent two different
paradigms which could be also identified in re-
lated areas of computer science, and in the differ-
ent historical periods these approaches have de-
veloped differently and sometimes had conflicts:
the symbolic against the quantitative paradigm,
which can be traced up to semiotic conflicts of
rationalists and empiricists, in terms of NLP or
behavioristic debates. On one side there is an
intuitive analysis and often “manually” created
symbolic rules – and on the other, an automatic
rule generation given through corrections of nu-
merical parameters of a statistical model. The
first paradigm has deeper and often more intui-
tively clear linguistic knowledge of the natural
language, while the second paradigm is more
robust and ready to overcome an erroneous in-
put and ambiguities, having better generalization
capacity in practice, while often showing more
superficial and shallow linguistic knowledge. In
the domain of text engineering (a notion met in
commercial applications like machine translation
systems and other NLP implementations) it is of-
ten more practical to use automatically generated
rules, maybe not so descriptive and intuitive, but
realized in less people-days and other resources,
while offering results with a quite good perfor-
mance. Of course, specific areas of application
are not the final reach of these paradigms, and

23INFOtheca, № 2, vol XI, December 2010

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

their research activities are continuing to devel-
op in quite a complementary manner. The well-
known IBM’s team under Frederick Jelinek’s
guidance has built a speech recognition system
in the mid 70-ties based on statistical methods.
This was done in the times of the great crises of
artificial intelligence researches and symbolic
paradigm in general, after the famous Lighthill
report in year 1973 (Dreyfus 1974) which was
well-inspired by poor results of machine transla-
tion at that time and which has undermined the
financing of such researches for at least a decade.
During 1990-1994 period in the DARPA MTEval
initiative, Jelinek’s machine translation system
that was statistically-oriented and with which
the language structure had no importance in the
beginning, CANDIDE, has never shown better
performance neither from the elder symbolic-
oriented SYSTRAN, nor from the “opponent”
Pangloss4 system in that manner, which can be
explained with the insufficient syntactical and
semantic knowledge of that system. In the end,
both CANDIDE and Pangloss became hybrid so-
lutions in order to remain sufficiently robust and
advanced. There is no general machine learning
system equally good for all applications and do-
mains3 (Schaffer 1994) and more significant than
specific solutions at the same time – that is why
the implicit knowledge is important for machine
learning (bias) which is present in any symbolic
theory, or in the conceptual knowledge given by
well chosen grammatical rules in NLP. From the
mid 90-ties, taggers and statistical parsing had an
additional expansion also just by simple growth
of the raw hardware resources power.

2. Language resources and the quantitative
approach

The common property of these paradigms are
language resources like corpus and lexicon. The
length of the corpus is determined as the length
of a sequence of words given the sequence of
words constituting it, and the size of its lexi-

con is measured as the total number of different
words. An N-gram is a subsequence of length N
in a sequence of words, and the same N-gram
can appear many times in that sequence, which
is the frequency of this N-gram in the text given
as a sequence of words. Objects of the initial lan-
guage processing can be elements of a document
such as generalized text, punctuation characters
or HTML tags for instance, or tokens as a gen-
eralization of notion of words. The complexity
of annotated corpus, in which every word is as-
sociated with an appropriate tag, is influenced by
the number of categories in its tagset, which is
usually determined by its structure which is well
illustrated in (Džeroski et al. 2000). The structure
of tagset is determined by the expressive rich-
ness of a corpus, and it is directly influencing the
complexity of the tagging problem itself, both
manual, or automatic with taggers. For taggers
and computational linguistics in general it is very
important to have an annotated corpus in a digital
form (a good example of a development of such
a corpus is given in the MULTEXT-East14 proj-
ect). This corpus can serve as a “gold standard”
by which a tagger is trained, and by which per-
formance of a tagger is also being measured in
terms of machine learning programs. Automatic
morpho-syntactical text tagging is currently mak-
ing more than 95% correct results.

The paradigms mentioned previously differ in
the way of describing a language model: the sym-
bolic paradigm is using explicitly given gram-
matical rules, morphological and other rules,
while in the quantitative approach these rules are
implicitly given by examples of correct gram-
matical and language constructions (e.g. with an-
notated corpus) and its meaning, or by numerical
parameters of an appropriate statistical model. A
lexicon participates in the quantitative paradigm
also as a part of the model, e.g. established to-
gether with given N-gram frequencies (also, for
statistic parsers see examples 12, 19, 20) Tree-
Bank18 corpora are very important and interest-

INFOtheca, № 2, vol XI, December 201024

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

ing, where whole sentences are being tagged by
syntax trees). The statistical approach is dating
from early Shanon’s foundations of information
theory, with the shortest and most probable hy-
pothesis (Shannon Claude E., Weaver Warren
1949), and the famous example of a Shannon
game with the goal of recognizing the next word
in the sentence (1951, where the actual goal is
to minimize the entropy). Later in the 1960-ties
Solomonoff (Solomonoff 1964), Kolmogorov,
Chaitin, Gold (Gold 1967) and others established
the foundations of the statistical inductive theory,
stochastic context-free grammars and language
identification. Noam Chomsky made a remark at
that time about the concept of word probability,
stating that there isn’t any word probability no-
tion that has a reasonable meaning. The further
advancement of the statistical theory of machine
learning ((Vapnik 1999), (Mitchell 1997)) has
later on influenced the better defining of these
notions and problems, which in turn influenced
making better practical results. Given no input
error, a natural language is abundant with prob-
lems for this kind of approach – above all, prob-
lems which come from multiple semantic values
(polysemy, e.g. “I saw a girl with high tempera-
ture”) and syntactic values of words - e.g. in the
syntagm “from time to time” program might tag
differently its part “time to time” also as complex
form or attribute, or it might tag each single word
as a preposition or noun, or the whole syntagm as
one complex token.

In this paper some already prepared corpora
are used with more details following. There are
well known English annotated corpus examples
like Brown’s corpus (around 1000000 or 1М
words in length, created in 1960-ties) and Su-
sanne corpus which was created from a part of
Brown’s corpus, National British Corpus (BNC),
WSJ and PTB (specially the Wall Street Jour-
nal articles used for making the Penn Tree Bank
corpus). An annotated corpus can be created (by
part) manually for a given tagset as it was done

in the MULTEXT-East14 project, where an ad-
ditional CLOG utility was used for the lemmati-
zation preparation by an automated learning for
each tag (Erjavec et al. 2005). The corpus anno-
tation can be also done on an automatically gen-
erated tagset (in the unsupervised learning man-
ner). A few corpus examples according to the
Wortschatz project5 as given in table 1 describe
some of the basic annotated corpora features (M
= million):

Corpus BNC CLEF Wortschatz

Language English Dutch German

Length 100 M 70 M 755 M

Lexicon Size 25706 21863 74398

Tagset size 344 418 511
Table 1 – several corpus examples

3. Different taggers and machine learning
methods

In programs which use annotated corpora,
the language model is above all defined (during
training phase) by a lexicon and tagset, and im-
plicitly also by a training corpus and its learning
model which depends on the specific algorithm
and implementation. That could be represented
by additional N-gram data as with the TnT tagger,
rewriting rules (more precisely, rules of changing
existing tags according to the annotated text as
given context) as with the Brill’s tagger, or other
parameters. The language model understood in
this way differs from the traditional set of formal
grammatical and other rules which are also pres-
ent in such model, but in a different, quantitative
form. N-grams as subsequences of length N of
(consequent) words or tags in a corpus with total
occurrence of frequencies in the reference cor-
pus contain implicit information about correct or
at least statistically expected constructions and
links between words, but making syntax struc-
ture dim on the other hand, which is not that im-
portant for tagging up to a certain limit.

25INFOtheca, № 2, vol XI, December 2010

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

As mentioned earlier also, first successful tag-
ger implementations have been based on statisti-
cal models like the HMM. Some of the most pop-
ular and efficient taggers today like TnT are still
using basically the same method or an improved
form (more in section 4.1). Many improvements
are concerned about the tagger’s sensitivity to-
wards unknown words (which are not present in
the lexicon and training corpus) where a great
decrease of efficiency lies (going up to 50%)
if no modifications are used (a consequence of
the shallow quantitive approach). Some taggers
recognize parts of words or suffixes and pre-
fixes (within given maximal number of charac-
ters) in the lexicon, or follow and use additional
lexeme features, which can often be specific for
the given language model or the language itself,
or use special lexical rules, as in Brill’s tagger
case, by which the most probable tag is chosen
for an unknown token. The tagging of tokens can
be understood as a problem of machine learning
((Mitchell 1997), (Nillson 2005)) and classifi-
cation, and so in time some non-statistical tag-
gers emerged. The Brill’s tagger is a reference
example based on rewriting rules that increase
performance of the tagger. It is achieved by de-
vising rules that involve words beside tags, com-
pared to the standard HMM which uses only tags
(more in section 4.3). The best results so far1 аre
achieved by taggers like SVMTool based on the
SVM classification (more in section 4.5), Stan-
ford PoS Tagger (Stanford NLP Group12) based
on Bayes networks and a variant of the Maxi-
mum Likelihood Estimation (MLE) method, and
LTAG21 PoS Tagger which is based on a variant
of artificial neural networks (ANN). All these
taggers use the bidirectional learning instead of
the standard learning which is based on the “left
to right” direction.

There are many variations of statistical learn-
ing which are not based on the HMM and similar
models. For instance, MXPOST is a tagger using
the model of maximum entropy (MEP, see sec-

tion 4.4). The statistical approach is somewhat
also present in the Brill’s tagger (for the initial
state), although it is not the essential idea behind
it, but rather it is the transformation based learn-
ing. Among methods which are not statistically
oriented there are also distinguished methods
like the learning based on decision trees which is
used by Tree Tagger (more in section 4.2), or the
memory based learning (used by the well known
Memory-Based Tagger - MBT10) which adds up
to instance based (lazy) learning (where no train-
ing is needed), among others.

New solutions and tagging implementations
arise often, there are competitions and confer-
ences2 more or less related to them, where doz-
ens of taggers (and other programs like parsers)
get evaluated - currently an ongoing “war” for al-
most every tenth of performance percent is being
fought every day. Apart from accuracy, tagger’s
speed, its training speed, and the ease of its use
are sometimes far more important than few per
mill performance advantages. Some of the most
popular taggers and associated machine learning
methods will be shortly described and evaluated
further on in this paper.

3.1 The tagger performance
Different criteria can be important or interest-

ing when measuring performance of a tagger, but
the most important performance mark by far is the
accuracy of tagging (in functional terms, this is
according to the machine learning theory exactly
the same performance measure, just as with any
other machine learning problem). In this paper,
compared to the text length, the error of tagging
for the given text will be defined as the number
of incorrectly tagged words, while accuracy is
defined as the number of correctly tagged words.
Beside this property of a tagger, for these pro-
grams might also be important the speed of tag-
ging and training (determined by the algorithm
complexity and implementation) as mentioned,
but not considered with details here. Additional

INFOtheca, № 2, vol XI, December 201026

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

options and capabilities, learning model options
and the ease of use are also important.

The testing of performance is done by the
10-fold cross-validation testing, which is also
used by some learning algorithms for the fine
parameter adjustment or the optimal model pa-
rameter learning. This testing process starts with
the dividing of a training corpus in 10 equal par-
titions, and then training starts on one 9/10 of the
corpus, while the testing is done on the remain-
ing 1/10. This process is repeated 10 times for
every “9/10+1/10” combination of the training
and testing, by which 10 results and error rates
are generated in that way, and the average value
and its variance is the final measure which cor-
responds to this method of evaluation. A more
sophisticated analysis of the performance would
involve statistics about the class of words known
to the lexicon, and specially for words unknown
to the tagger. In the latter case, the decrease of
performance can be up to 30-50%. The overall
State-Of-The-Art1 results for English language
are about 96-97%, in which unknown words are
not treated separately, and in the former evalua-
tion method there should be always at least about
10% of unknown words in each training corpus.
All tagging programs here are tested equally by
the same evaluation method, same learning cor-
pora and same 10-fold testing partitions. Statistics
gathered here serve principally as a performance
indicator for comparing different programs, not
as a measure of the distance from state-of-the-art
results. The tagger behavior with unknown to-
kens is expressed in the percent ratios (compared
to successfully tagged tokens, and additionally
compared to all unknown testing tokens, where
the result varies within the boundaries of expect-
ed results achieved on similar tests).

4. Chosen solutions and taggers
The evaluation of taggers in this paper is done

on texts in Serbian. Taggers were selected as ref-
erence academic and non-commercial tagging

solutions, and an additional reason of their choice
is their availability on the web. The input anno-
tated training corpus and the output result for all
these taggers can be in the vertical format where
each word and its associated tag are separated by
a white space in their own separate line:
B i o V m p s - s m a n - n - - - p
j e V a - p 3 s - a n - y - - - p
v e d a r A f p m s n n
i C - s
h l a d a n A f p m s n n
a p r i l s k i A o p m p n
d a n N c m s n — n
. S E N T

Example 1a – vertical text format of annotated
corpus

and where some taggers can also have lemma in
that same line beside the tag for the given word.
The text can also be given in the horizontal for-
mat, where each word is connected by a separa-
tor to its tag, each sentence is given in its own
separate line, while words are separated by white
space instead of separate lines (Brill’s tagger is
using “/” as separator, while MXPOST is using
“_”):
B i o / V m p s - s m a n - n - - - p j e /
V a - p 3 s - a n - y - - - p v e d a r /
A f p m s n n
i / C - s h l a d a n / A f p m s n n
a p r i l s k i / A o p m p n d a n /
N c m s n — n
. / S E N T
Example 1b – horizontal text format of annotated

corpus

Each of these programs has an appropriate
utility of its own that is used on a given training
corpus for building a language model which is
usually represented by a set of specific files with
available learning options.

4.1 TnT - Trigrams’n’Tags
The ТnТ7 tagger (Trigrams’N’Tags), whose

author is Thorsten Brants, Saarland University in

27INFOtheca, № 2, vol XI, December 2010

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

Germany, Computational Linguistics and Phonet-
ics department, has emerged in the period 1993-
2000 (Thorsten Brants 1999, 2000). This tagger
is using machine learning based on the HMM
which is a case of Bayes learning and it repre-
sents an example of the class of machine learning
algorithms that use probability estimation given
by the acyclic directed graph of computation
(Bayesian network) defined by the conditional
dependence relation among random variables
as nodes. The computing problem then comes
down to the classification problem with such a
probability computing network where one finds
the most probable sequence of tags for the given
sequence of words. The HMM is a Bayesian net-
work whose node set is divided in two partitions:
the set of hidden events or states, and the set of
observations or symbols. Each state has different
observations which depend only on that state in
the sequence of states which is described by the
symbol emission probabilities, while the hidden
state can depend on all previous hidden states in
the sequence. Order of the HMM model is de-
fined by the number of previous states on which
current hidden state depends (for instance, with
second order HMM each hidden state depends
only on two previous adjacent hidden states).
In the tagging problem, the set of hidden states
represents tags, while the set of observations
represents words in the text. The HMM model is
given by probability distributions of initial states
and transitions from one state to another. Basic
questions in this case are: how to determine the
most probable sequence of hidden states for the
given sequence of observations (the decoding
problem), and how to learn model parameters in
order to maximize the probability of sequence of
observations in the given training set (the learn-
ing problem). ТnТ is an example of a successful
statistically based (stochastic) tagger, based pri-
marily on the Viterby’s algorithm for decoding
second order HMM, and on N-grams and inter-
polation (smoothing) for the problem of normal-

ization for learning using the Baum-Welch algo-
rithm, (Rabiner 1989), (Welch 2003).

TnT is truly an example of a tagger that is
comfortable to use, learning fast and also tagging
fast. This system is using several types of data
files. For the learning it is sufficient to have an an-
notated input corpus in the vertical format whose
file name having no extension is later used as the
model name. Each sentence must be ended by a
token with tag SENT, or by a tag specified with
option “-st”. This system uses several data files
generated by the learning which can be modified
afterwards. There is a lexicon as a file in the ver-
tical format having at least 4 columns separated
with white spaces: the first column contains the
word (token), the second column contains its fre-
quency in the training corpus, the third column
contains the appropriate tag, and the fourth col-
umn contains the frequency of that tag. Many tags
for the given word are allowed, and each tag is
followed by its frequency, while the sum of such
frequencies is equal to the word’s frequency. Be-
side this file, there is also an N-gram file, a tagset
list, and a special file for tag mapping which can
be used to change tag names in the output file dif-
ferently from the existing source model.

This program does not support lemmatiza-
tion. Its availability and licensing is somewhat
different from what is usual with the open source
programs. One can obtain download access for
the programs for learning and tagging (and may-
be the source code) only by addressing the author
directly via e-mail, while it is generally available
for academic and non-commercial purposes for
free. It is created and tested before all on Posix
(Unix, Linux) platforms.

4.2 Tree Tagger
The author of Tree Tagger (ТТ) is Helmut

Schmid6 (Schmidt 1994), Institut fuer maschinelle
Sprachverarbeitung, Stuttgart University in Ger-
many. It was created during 1994-1996. as part
of the TC project. Tree Tagger is not a true sto-

INFOtheca, № 2, vol XI, December 201028

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

chastic tagger example compared to other known
programs that use the HMM because it differs in
the way it is learning, yet its tagging is done by
Viterby’s algorithm, too. The decision tree learn-
ing algorithm is used for the training (similar to
ID3 and C4.5 algorithms), with the aid of trigram
model. The decision tree is pruned after being
built by the information gain rule, which is im-
portant for overcoming the learning problem of
over-fitting and and for making the optimal algo-
rithm performance.

The TT lexicon consists of three parts: the
full-form lexicon, the suffix lexicon with suffices
up to 5 characters in length, and the given de-
fault value used if word is not found in the for-
mer parts of lexicon. If a word is not found in
the full-form lexicon during the tagging process
even after changing its capitalization, the suffix
lexicon is then searched by using suffix decision
tree. The suffix decision tree is built during the
training process just as the previously described
tagging decision tree is built: for each word an-
notated with a tag from the open class tagset,
character by character of the word suffix. Ad-
ditionally, each parent node has a default child
node marked with the probability which added to
the sum of other children is equal to 1, and if it is
the only branch left it is then pruned. Leaves are
labeled with probability vectors of tags with the
given suffix.

For tagging it is sufficient to provide the in-
put file and the parameter file produced in the
training. The list of tags in the open class is the
list of tags available for the unknown words. The
tagging can be done without lemmas in the lexi-
con, for instance by giving the same “dummy”
value to all the words in the lexicon, e.g. “-”. The
input file is in the vertical format, and so is the
output file. The learning and model generation
is quite simple, though lexicon and open class
data files have to be prepared additionally be-
fore that (eg. by additional script22, refer to Sec-
tion 5) beside the annotated training corpus. The

model produced is stored in a binary parameter
data file. Here is a part of a lexicon file given in
the Example 1:

p r i s l o n i V m i a 3 s - a n - n - - - e
p r i s l o n i t i
t a l e n t a N c m s g - - n

t a l e n a t
g u t l j a j u N c m s l - - n

g u t l j a j
n a g n u t V m p - - s m p n - n - - - e
n a g n u t i
V i n s t o n o v o A s p n s n
V i n s t o n o v A s p n s a
V i n s t o n o v
Example 1 – a part of a lexicon in the Tree Tagger

Tree Tagger supports lemmatization opposed
to other taggers described here. The licensing is
similar to the TnT licensing - it is free for non-
commercial and academic use, and it also is not
an open source program (unless an agreement
is made somehow directly with the author him-
self), while the program is freely available for the
download. It is available both for Posix and for
Windows operating system.

4.3 Brill – Rule Based Tagger (RBT)
Eric Brill8 (Brill 1992) is one of the pioneers

of the transformation learning (Transformation-
Based Learning) and the creator of the RBT tag-
ger (Rule Based Tagger) founded on this model
of learning. It was developed in the period 1992-
1994 and it has set many standards for taggers
at the time. In some parts it is realized as Perl
scripts because Brill promotes the idea that this
is a perfect programming language and tool for
linguistic researches due to its abundance and
capabilities of sequence processing and regular
expressions, but this is also the reason why his
implementation of training is very slow. This sys-
tem represents one of the basic tagger examples
which are not mainly statistical, but instead, this
tagger is based mainly on the incremental contex-

29INFOtheca, № 2, vol XI, December 2010

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

tual transformation rule learning. It is using the
rewriting rules which achieve the performance
improvement by choosing result with the highest
estimation of accuracy, or in other words, with
the lowest tagging error. In essence, the tagging
is done in two stages: in the first stage, the start-
ing state of the input corpus is initiated by using
its lexicon, and intrinsic and lexical rules of the
model. In order to overcome the HMM limita-
tions of using only tag N-grams, Brill proposed
and invented transformations which refer both to
tags and words. Then, in the second stage, the
tagging performance is increased by applying
contextual rules of the trained model. These rules
are similar to lexical rules, with a second tag add-
ed which replaces the source tag - all rules sup-
pose one of the several types of conditions, and
in essence change the tag after being triggered if
the condition is true. The learning consists of the
lexical rules learning phase, and the context rules
learning phase driven by the least tagging error.
In the latter phase the error is estimated itera-
tively for each candidate rule before and after the
transformation, and then the best available rule
by the mark is chosen and put into the rule set
until there is no applicable rule left with the error
under the default error rate threshold. This tagger
has “built-in” lexical rules for unknown words
and for words which begin with a capital letter:
they are considered as proper nouns automati-
cally (taken as nouns, otherwise), after which the
unknown words subprogram is applied. In short,
taking suffixes up to 4 characters in length and
searching for the known sub-words in the lexi-
con, and learning new rules if found.

The model data generated by the learning is
stored in text files. The input training annotated
corpus is expected in the horizontal format, and
so is the generated output. The learning process
is not simple, and it is done in several stages: the
tokenization (given in the vertical format by the
Penn Tree Bank standard, for example: “The/det
cat/noun sat/verb on/prep the/det mat/noun ./.”),

the dividing (splitting) of the annotated training
corpus into the training corpus for lexical rules
and into the partition for contextual rules, sepa-
rately. One of the limitations of this program is
the slow learning speed, but this can be controlled
by appropriate setting of the error rate threshold.
This tagger is intended to be used incrementally
by increasing and changing the set of rules with
new and smaller training corpora. The learning
is stopped when the error reaches the threshold
value hard-coded in the very Perl code, and the
whole learning procedure is far too complicated
and demanding compared to other taggers. The
detailed description and instructions for this and
other tools are available for download22.

This tagger does not support lemmatization.
RBT and its source code are available for free
without limitations, but under a license which is
of an open source type. Though there are imple-
mentations for different platforms, including
Java as a platform, the learning in basic form is
not supported on Windows operating system.

4.4 MXPOST
Adwait Ratnaparkhi, working currently in the

Yahoo! company, is the author of the MXPOST11
(MX shortly) tagger which he developed dur-
ing 1996-1999. This tagger is using a statistical
concept of learning and a method of Maximum
Entropy Principle (MEP shortly, (Adwait Ratna-
parkhi, 1996)), which is under some conditions
dual to the previously mentioned MLE. This
learning concept maximizes the conditional en-
tropy of the learning model on a given training set
instead of maximizing the likelihood. A bigger
entropy of the learning model means that there is
more information coded in the model parameters.
This program (MX) is closer to the Brill’s tagger
and SVMTool by its slow learning speed, which
is still slower for an order of magnitude in case of
two latter taggers. The training of this tagger is al-
ways done in 100 iterations regardless of whether
the learning performance is reached or not.

INFOtheca, № 2, vol XI, December 201030

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

The data file with learning examples has simi-
lar horizontal structure to the one that Brill’s RBT
is using, only that it uses “_” sign as separator for
token and its tag. The output file is in the same
format. The learned model data is stored into text
files in a separate model directory.

This program does not support lemmatization.
The original implementation is realized as Java
program and it is still available as a somewhat
test version. MX is free for non-profit purposes,
freely available for download and it is not open
source.

4.5 SVMTool
Authors, Jesus Gimenez and Lluis Marquez,

created SVMTool9 during 2000-2004 under the
TALP Research Center NLP group, Universitat
Politècnica de Catalunya. This is one of the pro-
grams by which a “state-of-the-art” result was
reached based on WSJ corpus, and a program
with the richest range of options for the train-
ing and influence on the process of tagging. It
supports, among other features: bidirectional
learning and tagging, cross validation of results,
special language exceptions and dictionary cor-
rections, different learning models, and other.
This leads also to one of the main deficiencies
of this tagger, which is the inefficient learning.
In short, the idea is to code different text features
into a sequence of frames or windows of a giv-
en width measured by tokens, centered around
the token that is currently analyzed, and with
the default width 7. There are features of words
(whether a word is capitalized or not, punctua-
tion and special signs, numbers, etc), and also
N-grams, tags, and other features. The vector
of such features is then classified by the SVM
algorithm, where each class represents an ap-
propriate tag. Vapnik prepared theoretical ideas
for the Support Vector Macihne classifier (SVM,
(Vapnik 1999)) already in 1963. This classifi-
cation method is a method of maximum margin
hyper-plane classification, because the goal for

these classifiers is to determine the hyper-plane
which separates the classification space into two
partitions (half-spaces) in that way that the near-
est distance between this margin hyper-plane and
a class instance is maximized. SVM additionally
minimizes the classification error by using nu-
merical solving of a quadratic programming (QP)
problem. SVMTool uses one of the most simple
and most efficient implementations, SMO (Se-
quential Minimal Optimization9), (Platt 2000).
SVM methods can be easily transferred into non-
linear methods by using non-linear kernels (Aiz-
erman’s ,,Kernel trick”) and represent one of the
most efficient known classifiers today.

The input training annotated corpus and the
output result are in vertical format, with the plain
space instead of white space. For the learning it
is necessary to set configuration parameters in a
text file, either with a short or with a complex
template available. More than two hours for a
2500 word corpus were not enough for it to con-
verge with the longer template, while with the
shorter template it takes only slightly less than
Brill’s tagger. The more advanced usage option
considers detecting SVM model parameters
based on the fine tuning by validation on training
set, but the main question is if the training lasting
several times longer than usual just for a per mil
or few of higher accuracy is really justified.

This tagger does not support lemmatization.
Authors are offering the program in Perl under
the open source LGPL and FSF license and it is
not fairly tested on the Windows operating sys-
tem. It is freely available for the download, but
the program relies on an external tool SVMLight
whose author is Thorsten Joachim, which is also
open source, but author’s permission is needed
for any commercial purpose.

5. The evaluation of selected taggers
The process of evaluation of taggers selected

for testing in this paper is done automatically
with a script that enables this in following steps:

31INFOtheca, № 2, vol XI, December 2010

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

• input corpora data files are transformed into
vertical text form with appropriate XSLT trans-
formations giving the output result in out1.txt
for whole corpus;

• initialization of stat_TAG.txt files with sta-
tistical counters, where TAG belongs to set {TNT,
TT, RBT, MX, SVM} of chosen taggers;

• main loop, script is executed in 10 iterations,
for variable n in range from 0 to 9

• by using additional script cross-tab10.sh the
training corpus learn.txt and testing corpus test.
txt is prepared as n-th “9/10+1/10” partition of
whole corpus;

• for each tagger TAG gets transformed cor-
pus and other needed files prepared using АWК
scripts, training is started afterward and then tag-
ging of unannotated corpus for testing;

• tagging result in vertical form of tagger TAG
is in file test_TAG0.txt, and earlier prepared an-
notated test corpus is in file test_TAG.txt; verti-
cal form enables easier comparison between the
resulting annotation and the source;

• for each tagger TAG counters are updated
for unknown words using additional scripts un-
known.sh and unknown.awk (incorrectly tagged
word are searched in the training lexicon, and if
not found there they are treated as unknown);

• aggregated statistics are made using addi-
tional scripts report1.аwk and report2.awk;

• file clean-up is done for the data and tempo-
rary files created during the training process;

This automated testing process and the tagger
evaluation offer the opportunity of easier extend-
ing with additional taggers in later evaluations
and their comparison with earlier testing results,
making the evaluation process and statistics
computation less prone to errors, and above all,
it represents a convenient working environment
for experimenting with taggers. The possibility
of the integration of different taggers and their
training parameters and models is also very in-
teresting, even for different tagsets and corpora.
For instance, as described in (Jakub Zavrel, Wal-

ter Daelemans 2000), with the Bootstrapping
method the learning with new tagset is achieved
with a much smaller number of examples, and
also its tagging performance is not smaller or
at least slightly better than the performance of
each single tagger. A simple way of the tagger
integration with some performance improvement
is done by using the voting method – a tag is
chosen as the result if it’s selected or given the
best marks by the largest number of taggers. The
further approach might be the choice made by a
second level machine learnt experience based on
different taggers, their tagsets, parameters and
input.

All these taggers were installed by their in-
stallation manuals without any bigger difficul-
ties. The total script execution time for the train-
ing and tagging is based on the Intel(R) CoreTM2
Duo CPU/T7700@2.40GHz processor plat-
form, which is described later in this paper. Li-
nux Fedora FC8 is selected as the OS platform
for testing because many programs (TnT, RBT)
do not support learning on non-Posix platforms
or have some other limitations. However, the
main reason for this choice is the comfortable
working with strings, regular expressions, com-
mand piping and numerous handy tools for the
text processing like word and line counting, dif-
ference matching, powerful scripting languages
and other. All scripts developed here are avail-
able for downloading22, together with refer-
ence papers with detailed explanations, and a
completely prepared tagging environment with
scripts.

5.1 Corpora
The basic property of an annotated training

corpus is its length, or the number of tokens in
the sequence of annotated tokens which repre-
sents the corpus text. But, the size of the set of
tokens which constitute a lexicon based on a cor-
pus can be more statistically important because
the word distribution is not changing much with

INFOtheca, № 2, vol XI, December 201032

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

a big enough length according to Zipf’s law. A
very important property of a corpus is its annota-
tion tagset size. The tagset can be complex and
of big cardinality, which influences the most per-
formance of a tagger. The tagset size depends on
the tagging concept, meaning what is expected
to be achieved by the tagging, and it also de-
pends on the language itself. For instance, Serbi-
an language is certainly more demanding in that
manner than English if the language case is used
in tagging, too. Beside that, different taggers are
differently sensible to the input corpus infor-
mation quality. The smaller but certain number
of errors can significantly decrease the tagging
performance (for instance, an incorrectly tagged
token in the training corpus, or a punctuation
missing at the end of a sentence in the training
corpus can produce tagging errors later). Some
minor errors can be detected and manually cor-
rected if script shows an error during the test,
others can be corrected by a simple lexical pro-
cessing – but many of them remain “hidden”.
All taggers are trained with their default training
parameters, without any special changes (and
are equally treated in that way). Of course, some
taggers might have been able to give a better
performance, but only with the additional effort
and specific customizations.

Two types of input data files were used
throughout the process of evaluation for build-
ing training corpora. The first type has the XML
structure by CES15 standards, having in short:

• each word with an XML tag mw that has the
attribute:

- id for a unique identifier,
- lex giving lexeme or token, word,
- lemma for lemma of the given token,
- tag for its tag.
• each sentence with an XML tag seg and the

attribute id which identifies it uniquely
• each page marked by an XML tag p, and the

division by an XML tag div

Example of such a data file and its structure
is given in the Example 2 which is the part of
the file 02HP-SR-Lemma.xml , and it is
transformed into a needed plain text format with
an appropriate XSLT transformation by using
data.xsl from the Example 3:
<Annotation type=”morpho”>
 <body>
 <div>
 <head>
 <mw id=”mw__1 “ lex=”ZAKLJUCAK”
lemma=”ZAKLJUCAK” tag=”?”/>
 </head>
 <p>
 <seg id=”n1”>
 <mw id=”mw_1_1 “ lex=”Na” lemma=”na”
tag=”PREP+p4”/>
 <mw id=”mw_1_2 “ lex=”međunarodnom”
lemma=”međunarodni” tag=”A”/>
 <mw id=”mw_1_3 “ lex=”planu” lemma=”plan”
tag=”N”/>
 <mw id=”mw_1_4 “ lex=”poslednjih”
lemma=”poslednji” tag=”A”/>
 <mw id=”mw_1_5 “ lex=”decenija”
lemma=”decenija” tag=”N”/>
 <mw id=”mw_1_6 “ lex=”preduzeti”
lemma=”preduzeti” tag=”V+Perf+Tr”/>
 <mw id=”mw_1_7 “ lex=”su” lemma=”jesam”
tag=”V+Imperf+It+Iref”/> ...
 </seg>
 <seg id=”n2”> ...

Example 2 – the XML structure of corpus 1 and
corpus 2

<?xml version=”1.0” encoding=”UTF8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”text” omit-xml-declaration=
 ”yes” indent=”no”/>
 <xsl:template match=”//seg”>
 <xsl:for-each select=”mw”>
 <xsl:value-of select=”@lex”/>~
 <xsl:value-of select=”@tag”/>~
 <xsl:value-of select=”@lemma”/>~
 </xsl:for-each>*SENT*
 </xsl:template>
</xsl:stylesheet>

Example 3 – data.xsl

The second type of data files used for the
evaluation are prepared according to TEI16 rec-

33INFOtheca, № 2, vol XI, December 2010

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

ommendations. It is using an XML notation, too,
but with some differences in the structure: XML
tags and attributes are not the same, and lexemes
are not given as attributes but as values of the
XML tag w. The TEI standard includes a manda-
tory header with the bibliographic data, informa-
tion about code page, about the structure of the
file and many other meta data, and also many ad-
ditional structures (e.g. describing the semantic
structure of the tagset).

<TEI.2 id=”Osr” lang=”sr”>
 <teiHeader creator=”CK” status=”update” ...
id=”Osr.teiHeader”>
 <fileDesc>
 <titleStmt> ... </fileDesc>
 <encodingDesc>
 <projectDesc> ... </encodingDesc>
 <revisionDesc> ... </revisionDesc>
</teiHeader>
<text lang=”sr” id=”Osr.”>
 <body>
 <div id=”Osr.1” type=”part” n=”1”>
 <div id=”Osr.1.2” type=”chapter” n=”1”>
 <p id=”Osr.1.2.2”>
 <s id=”Osr.1.2.2.1”>
 <w lemma=”biti” ana=”Vmps-sman-n---p”>Bio
</w>
 <w lemma=”jesam” ana=”Va-p3s-an-y---p”>je
</w>
 <w lemma=”vedar” ana=”Afpmsnn”>vedar
</w>
 <w lemma=”i” ana=”C-s”>i</w>
 <w lemma=”hladan” ana=”Afpmsnn”>hladan
</w>
 <w lemma=”aprilski” ana=”Aopmpn”>aprilski
</w>
 <w lemma=”dan” ana=”Ncmsn--n”>dan</w>
 <c>;</c>
... <!-- pb n=283 -->
 </p>
 </div>
 </body>
</text> </TEI.2>

Example 4 – the XML structure of corpus 3
according to TEI

An example of this form is given in the Ex-
ample 4 as part of the file oana-sr.xml .
Appropriate XSLT transformation which is pro-

ducing output similar to the previous data form
is used in a similar manner. After that, other pro-
cessing tasks follow in awk scripts which bring
the final vertical form of the annotated training
corpus.

• Three corpora are used for the evaluation
which will be referred in this text as corpus 1,
corpus 2 and corpus 3 (source files on which they
were built are available for download22):

• corpus 1 is created from the file 01HP-
SR-Lemma.xml which represents part of
the document “Helsinške sveske br. 15, nacio-
nalne manjine i pravo”0 in CES format which
also have 02HP-SR-Lemma.xml and
03HP-SR-Lemma.xml files

• corpus 2 is created by the concatena-
tion of files 01HP-SR-Lemma.xml,
02HP-SR-Lemma.xml, 03HP-
SR-Lemma.xml , and additionally Ra-
diodif-SR-lemma.xml and Ra-
dionica-SR-lemma.xml which
contain Serbian Radio diffusion Law0 and mate-
rials from UNDP workshops; they are all in CES
format and of size 1-2MB

• corpus 3 is created from the file oana-sr.
xml in TEI form of Orwell’s “1984”, with the
size around 4.5MB

The semantic structure of a tagset which is
also known as MSD, the morpho-syntactic de-
scription, that is used in corpus 1 and corpus 2
is not the same as in the corpus 3. Namely, cor-
pora 1 and 2 have only types of words coded
and each token there has its lemma, while the
corpus 3 is coded with more details22, according
to morpho-syntactical description developed in
the MULTEXT-East project. The corpus 3 con-
sists of the text of the Orwell’s novel ,,1984”
(Krstev Cvetana et al. 2004) which is developed
in the course of the European MULTEXT-East
project13 as a parallel multi-lingual corpus. By
the TEI standard, MSDs are given in the librar-
ies of feature structures. For example, as part
of the previously mentioned MULTEXT-East

INFOtheca, № 2, vol XI, December 201034

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

project14 a verb is described with 15 features, of
which two with possible values are as given in
the Example 5:

Verb (V)
**** **** **** **** **** **** **** ---- ---- ---- ---- ---- ---- ---- ----
PoS Type VFrm Tens Pers Numb Gend Voic Neg Def Cltc Case Anim Clt2 Aspt
**** **** **** **** **** **** **** ---- ---- ---- ---- ---- ---- ---- ----
= ========= ========= = EN RO SL CS BG ET HU HR SR
P ATT VAL C x x x x x x x x x
= ========= ========= =

1 Type main m x x x x x x x x x
 auxiliary a x x x x x x x x x
 modal o x x x x x x x
 copula c x x x x x
 base b x
- -------------- -------------- -
2 VForm indicative i x x x x x x x x x
 subjunctive s x
 imperative m x x x x x x x x
 conditional c x x x x x x x
 infinitive n x x x x x x x x
 participle p x x x x x x x x
 gerund g x x x
 supine u x x
 transgressive t x
 quotative q x
- -------------- -------------- -
...

Example 5– MSD structure

As a part of this project a special tagger To-
TaLe14 was developed (Erjavec 2005), and also
TnT and MBT were used.

6. Results
Results generated with the previously de-

scribed process for all three corpora are present-
ed in Tables 2a, 2b and 3 in which mark * is used
to determine results on known words, mark **
is used on unknown words, while mark *** is
related to the training set. Length, size and lem-
mas refer to the appropriate corpus properties
expressed as the number of distinct words, where
K stands for 1000 words. Table 2a is a general re-
view about test and corpora used for all taggers,
while Table 2b shows the performance rate for
each tagger independently from the word class
together with rate of unknown words among un-
successfully annotated ones (**, a smaller per-
cent is better). The Table 3 is showing a better
tagger performance concerning unknown words
because it gives the proportion of incorrect un-

known words and all unknown words in the test
corpus (**), and for known words the proportion
of correctly tagged words and the rest of the test
corpus is given (*, a larger percent is better). This
table shows a better perspective about tagging re-
sults for word classes compared to previous, but
it also has less meaning about the overall tagging
performance. Corpora 2 and 3 are not much dif-
ferent in the number of tokens, but these differ
significantly in the number of tags in the tagset.

Tagger / Corpus Corpus 1 Corpus 2 Corpus 3
length 7.5К 75К 105К
size 2.5К 11К 18К
n/o
lemmas 1.6К 5К 7.6К

n/o tags 79 129 908
Overall test

duration 22min. 9h : 50min. 5 days,
1h : 29min.

average

size
2290–
2378

(2335)

9766–
10952

(10368)

16550-
17372

(16919)

n/o tags 73 – 79
(77)

120 – 129
(126)

840 – 897
(884)

Table 2а – basic properties of the tests and corpora

Tagger/
Corpus Corpus 1 Corpus 2 Corpus 3

% % ** % % ** % % **

TT
average 85.44 64.93 94.39 33.30 79.65 35.05
std.
dev. 3.90 3.87 1.86 20.25 1.92 1.85

SVM
average 84.93 64.70 94.27 38.02 85.24 34.67
std.
dev. 3.60 5.51 1.72 22.61 1.87 2.27

TnT
average 86.18 67.65 94.11 37.42 85.47 32.26
std.
dev. 3.60 4.33 1.65 21.85 1.75 2.19

MX
average 82.69 54.01 92.78 29.43 82.07 28.62
std.
dev. 3.84 2.49 1.79 16.93 1.79 16.93

RBT
average 84.96 82.15 93.14 47.24 85.20 37.96
std.
dev. 4.34 4.32 3.21 26.29 1.95 1.97

Table 2b

The tagging speed is not measured here, but
the measure of total time for the training and

35INFOtheca, № 2, vol XI, December 2010

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

evaluation is given (overall test duration). ТnТ is
certainly the champion of both tagging and learn-
ing speed, and his performances have proved as
best, and so did its simplicity of usage.

Tagger Corpus 1 Corpus 2 Corpus 3

* % ** % * % ** % * % ** %
ТТ 98.37 56.71 97.53 71.49 91.78 36.79
SVM 98.29 55.18 97.69 67.17 93.98 54.60
TnT 98.54 57.50 97.57 67.17 93.86 58.36
MX 97.43 57.01 96.48 69.09 92.06 54.26
RBT 99.10 43.96 97.97 48.17 94.24 50.33

Table 3

The script which divides the whole corpus
into partitions for learning and testing is reading
the corpus in sequential order, by the equal num-
ber of sentences for each partition. This maybe
isn’t ideal at the first glance, and it could be im-
proved by a random choice of sentences as it is
done in the divide-in-two-rand.prl in RBT, or
by using corpora of a bigger length. In the test
procedure described here, some of the testing
partitions in the second corpus were practically
left with no unknown words, and that caused the
unusually big standard deviation for unknown
words – on the other hand, that made a more re-
alistic test. Thorsten gives7 results with a stan-
dard deviation of 0.13 for Penn Treebank (0.76
for Susanne Corpus in English, 0.29 for NEGRA
corpus in German), which shows a standard de-
viation comparable with results presented in this
paper. Of course, such a comparison with statisti-
cal data in other papers is not a complete way to
prove that conclusions are correct here, but it de-
scribes well important tagger properties. Among
the given references in this area there are more
detailed proofs about nature of taggers and their
performance.

7. Conclusions
Results obtained from (Erjavec et al. 2005)

are given here in Ttable 4 for two taggers and
are based on Orwell’s “1984”13 as a MULTEXT-

East resource, too. These results are comparable
with results presented in this paper for ТnТ tag-
ger both for unknown words (having here even
somewhat better result), and for known words.
Similar results on the very same corpus 3 bring
even more sense to a comparison of the tagging
results in this way. Although the greater num-
ber of tags in the corpus 3 compared to corpus 2
had significant impact on its performance decay,
while corpus 2 has achieved performance close
to the state-of-art results (or almost the best re-
sults), still the test with corpus 3 is more realistic
and therefore more usable.

TnT MBT
Known 93.55% 93.58%
Unknown 60.77% 44.45%

Table 4

Judging upon the Table 2, the TnT tagger has
shown better performance for corpora 1 and 3,
while the Tree Tagger has “won” in case of cor-
pus 2, but by a per mil. If Table 3 is considered,
one can find that RBT is making a better perfor-
mance on corpora 1 and 2, and so is Tree Tagger
better on corpus 3, concerning unknown words. It
can be also concluded from that table that Brill’s
RBT has better results than other taggers in tag-
ging known words, but this should not be treated
as an important performance indicator because
differences are too small. The final conclusion in
general might be that Tree Tagger does somewhat
better with smaller tagsets, but in all other cases
TnT is obviously much better and is making an
“easy victory“. In the end, all these differences
might be also considered as very small and SVM
is also very close to all these good results.

Each of these programs can be tuned and ad-
ditionally customized up to some point in order
to achieve somewhat better results where SVM-
Tool has by far more capabilities than all other
tested taggers, but its training performance be-
comes very poor depending on the training cor-
pus. BNC corpus is about 1000 times longer than
corpus 3, while having a three times smaller tag-

INFOtheca, № 2, vol XI, December 201036

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

set and a slightly smaller number of tokens than
corpus 3 which is even more important – so, the
tagset size is most important. Corpora such as the
corpus 2, with a smaller tagset (and even a small-
er length) are ideal for exploring several taggers
and methods, and for comparative testing of their
performance, but they are not good for a real
exploit. The unexplored challenge is to reveal the
maximally achievable performance reach of all
these taggers on Serbian.

The optimal corpus length and size as a train-
ing set is one of the important achievements of

statistical theory of machine learning – it is shown
that it depends only on the desired error magni-
tude and the learning probability, and also on the
size and structure of the hypothesis space (details
available in (Vapnik 1999) and (Nillson 2005)).
The corpus (like corpus 3) is certainly more im-
portant for finer investigations and sophisticated
performance, while having in mind over-fitting in
learning (a too big training set can degrade per-
formance and generalization abilities) which is
handled good by all tested taggers themselves im-
plicitly with different mechanisms of their own.

37INFOtheca, № 2, vol XI, December 2010

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

18 treebanks: PTB http://www.cis.upenn.edu/~tree-
bank/
 ICE http://www.comp.leeds.ac.uk/amalgam/tag-
sets/ice.html
19 Michael Collins 1998. PhD http://people.csail.mit.
edu/mcollins/
 ftp://ftp.cis.upenn.edu/pub/mcollins/PARSER.tar.
gz
20 Dan M. Bikel http://www.cis.upenn.edu/~dbikel/
21 LTAG POS Tagger http://www.cis.upenn.edu/~xtag
/spinal/
22 download: http://users.hemo.net/shoom/taggers.
tar.gz
 http://users.hemo.net/shoom/tag.pdf

References
Brill Eric. 1992. A simple rule-based part of speech
tagger. Speech and Natural Language: Proceedings
of a WorkshopHeld at Harriman, New York.Morgan
Kaufmann Publishers, Inc., San Francisco, Californi,
pp. 112–116.
Dreyfus L. Hubert, Haugeland John. 1974. An Ex-
change On Artificial Intelligence.
http://www.nybooks.com/articles/9452
Džeroski Sašo, Erjavec Tomaž, Zavrel Jakub. 2000.
Morphosyntactic Tagging of Slovene: Evaluating
Taggers and Tagsets. 2nd International Conference
on Language Resources & Evaluation (LREC), pp.
1099-1104.
Erjavec Tomaž, Ignat Camelia, Pouliquen Bruno,
Steinberger Ralf. 2005. Massive multi lingual corpus
compilation: Acquis Communautaire and totale. Proc.
of 2nd Language & Technology Conference, pp. 32-
36.
Gold E. Mark. 1967. Language identification in the
limit, Information and Control, 10:447—474.
http://www.isrl.uiuc.edu/~amag/langev/paper/gold
67limit.html
Jakub Zavrel, Walter Daelemans. 2000. Bootstraping
a Tagged Corpus through Combination of Existing
Heterogeneous Taggers. Proceedings of the second
international conference on language resources and
evaluation (LREC), pp. 17-20.
Krstev Cvetana, Vitas Duško, Erjavec Tomaz. 2004.
Morpho-Syntactic Descriptions in MULTEXT-East -

(internet pages were accessed from November
2008-2010)
0 http://www.anem.rs/download/files/cms/attach?id=4
 ISBN 86-7208-065-3 http://www.helsinki.org.rs/
serbian/doc/sveske15.zip
1 State-of-the-Art results: http://aclweb.org/aclwiki/
index.php?title=POS_Tagging_(State_of_the_art)
2 Tagger Competitions and Conferences, Resources:
 http://www.aclweb.org http://www.lrec-conf.org
 http://alias-i.com/lingpipe/web/competition.html
 http://ltrc.iiit.ac.in/nlpai_contest07/cgi-bin/index.cgi
3 http://www.no-free-lunch.org
4 http://www.lti.cs.cmu.edu/Research/Pangloss/
5 http://wortschatz.uni-leipzig.de/~cbiemann/pub/2007
/BiemannGiulianoGliozzoRANLP07.pdf
6 TT http://www.ims.uni-stuttgart.de/projekte/corplex
/TreeTagger/DecisionTreeTagger.html
7 TNT http://www.coli.uni-saarland.de/~thorsten/tnt/
 http://coli.uni-sb.de/~thorsten/tnt/
8 Brill http://www.cst.dk/download/tagger/
 http://www.tech.plym.ac.uk/soc/staff/guidbugm/
software/RULE_BASED_TAGGER_V.1.14.tar.Z
 http://www.ling.gu.se/~lager/Home/brilltagger_
ui.html
9 SVM: http://www.lsi.upc.edu/~nlp/SVMTool/
 http://svmlight.joachims.org/
10 MBT: http://ilk.uvt.nl/mbt/
11 MXPOST: ftp://ftp.cis.upenn.edu/pub/adwait/jmx/
 http://www.inf.ed.ac.uk/resources/nlp/local_doc/
MXPOST.html
12 Stanford NLP Group – statistical Parser
 http://nlp.stanford.edu/software/lex-parser.shtml
13 Orwell http://nl.ijs.si/ME/bib/mte-nlprs01.pdf
14 MULTEXT-East: http://nl.ijs.si/ME/V3/msd/
 http://nl.ijs.si/et/
 http://nl.ijs.si/et/talks/SFB441/tue-slides/
 http://langtech.jrc.it/Documents/LTC-2005_Mul-
tilingual-corpus-compilation_Erjavec-et-al.pdf
15 CES: http://www.cs.vassar.edu/CES
16 TEI: http://www.tei-c.org
 http://bcdlib.tc.ca/tools-standards.html
17 Stanford Tagger http://nlp.stanford.edu/software/
tagger.shtml

INFOtheca, № 2, vol XI, December 201038

the Case of Serbian. In Informatica, No. 28, The Slo-
vene Society Informatika, Ljubljana. pp. 431-436.
http://www.matf.bg.ac.yu/~cvetana/biblio/mtesr-in-
form04.pdf
Leech G. 1987. Garside R. and Sampson G. The Com-
putational Analysis of English: A Corpus-based Ap-
proach. London: Longman
http://www.comp.lancs.ac.uk/computing/research/
ucrel/claws/
Mitchell M. Tom. 1997. Machine Learning. McGraw-
Hill. ISBN 0-8493-1232-9
Nillson J. Nils. 2005. Introduction To Machine Learn-
ing. Stanford unpublished textbook draft
http://ai.stanford.edu/people/nilsson/mlbook.html
Platt C. John. 2000. Fast Training of Support Vector
Machines using Sequential Minimal Optimization.
MIT Press, ISBN:0-262-19416-3 pp. 185-208
http://research.microsoft.com/~jplatt/abstracts/SMO.
html
Rabiner R. Lawrence 1989. A Tutorial on Hidden
Markov Models and Selected Applications in Speech
Recognition. Proc. IEEE 77(2), pp. 257-286.
Ratnaparkhi Adwait. 1996. Maximum Entropy Model
for Part-Of-Speech Tagging. Proceedings of the Em-
pirical Methods in Natural Language Processing Con-
ference, University of Pennsylvania, pp. 133-142.

Schaffer Cullen. 1994. A conservation law for gen-
eralization performance. International Conference on
Machine Learning, pp. 295-265.
Schmidt Helmut. 1994. Probabilistic part-of-speech
tagging using decision trees. In Proceedings of the In-
ternational Conference on New Methods in Language
Processing, Manchester, UK, pp. 44-49.
Shannon Claude E., Weaver Warren. 1949. The Math-
ematical Theory of Communication. The University of
Illinois Press, Urbana, Illinois, ISBN 0-252-72548-4
Solomonoff J. Ray. 1964. A Formal Theory of Induc-
tive Inference. Information and Control, Part I: Vol 7,
No. 1, pp. 1–22.
http://world.std.com/~rjs/pubs.html
Thorsten Brants. 1999. Cascaded Markov Models.
Proceedings of 9th Conference of the European Chap-
ter of the ACL (EACL-99), Bergen, pp. 118-125.
Thorsten Brants, 2000. TnT - A Statistical Part-of-
Speech Tagger. 6th Conference on Applied Natural Lan-
guage Processing, Seattle, Washington. pp. 224-231.
Vapnik N. Vladimir. 1999. The Nature of Statistical
Learning Theory, ISBN 978-0-387-98780-4
Welch R. Lloyd. 2003. HMM and the Baum-Welch
Algorithm, IEEE IT Society Newsletter.
http://www.itsoc.org/publications/newsletters/past-
newsletters/itNL1203.pdf/view

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

