
INFOtheca, № 2, vol XI, December 2010 21

**shoom013@gmail.com

SCIENTIFIC PAPER UDC 004.912:811.163.41’322

TAGGERS APPLIED ON TEXTS IN SERBIAN*

Zoran Popović**
Hemofarm, STADA

Abstract: This paper provides a comparative overview of existing language tools based 
on taggers and machine learning methods, with practical tests and results about differ-
ent taggers applied on texts in Serbian. For that purpose some already prepared anno-
tated corpora were used, and 10-fold cross validation was used as the testing framework 
with a specially devised and developed environment of automated testing based on unix 
scripting  (bash, perl, awk) – TnT has shown best performance, while Tree Tagger and 
SVMTool taggers have shown somewhat better performance in special cases. A pos-
sibility of combining different tagging methods  and tools (programs) and integration 
with other NLP environments opens a wide area for further investigations and experi-
ments about these solutions.

Keywords: tagging, tagger, PoS, machine learning, NLP, Computational Linguistics, 
CL

*This paper overviews the results presented in the Master Thesis submitted at the Faculty of 
Mathematics, University of Belgrade



INFOtheca, № 2, vol XI, December 201022

ZORAN POPOVIć ‒ TAGGERS APPLIED ON TEXTS IN SERBIAN

1. Introduction – two paradigms of  
Computational Linguistics

NLP (Natural Language Processing) as an area 
of Computational Linguistics usually implies 
very complex processes in terms of computabil-
ity and time needed for the processing. It consists 
of phases such as lexical analysis (segmentation 
and tokenization of input speech or text, which 
starts with finding beginnings and ends of sen-
tences or words, and detecting general lexical 
categories – future lexemes or tokens: numbers, 
punctuation characters, words, HTML tags, and 
similar), morpho-syntactic analysis (structure of 
a word, sentence or text), and finally, semantic 
analysis or even pragmatic analysis. Parsers, 
programs that do syntax analysis, have a highly 
complex task to cover all the rules and properties 
of a natural language. The traditional approach 
is “top-down”, where with this complex analysis 
in a conjoint process one also gets more simple 
properties like lexical properties. The goal and 
basic result of the analysis are structures and 
grammatical rules like formal grammar rules of 
Noam Chomsky (syntax tree of a sentence). This 
approach is aligned with the unfulfilled goal of 
describing a whole natural language with an ap-
propriate first-order predicate calculus theory.

The second quantitative approach to these 
problems which fits more with a reverse (“bot-
tom-up”) approach in which the process starts 
with efficient and fast algorithms of statistical 
nature which are not exact in the former tradi-
tional sense and which are used for more simple 
lexical tasks, gave unexpectedly good results and 
significant contributions to new NLP solutions. 
A class of such programs, called taggers, is con-
cerned about  discovering categories of words in 
a sentence. These programs put simpler, for each 
word in a text based upon its morphological, syn-
tactical and other roles, associate the word with 
an appropriate tag which describes  association 
with subclasses of lexical classes like: nouns, 
pronouns, verbs, prepositions, etc. The number 

of these subclasses and their categories can be 
extensively large if other properties of words are 
also taken into account: gender, number, person, 
case, and similar. Their number is determined by 
the complexity of a given language model built 
in that way, but also by the language itself. Some-
where during the 80-ties first practical results of 
European researchers with CLAWS program 
(Leech 1987), which is partly based on the Hid-
den Markov Model (HMM), have turned further 
interest for these and similar problems, and also 
specially for taggers and further development of 
the statistical NLP, and for the application of ma-
chine learning in NLP.

These two approaches represent two different 
paradigms which could be also identified in re-
lated areas of computer science, and in the differ-
ent historical periods these approaches have de-
veloped differently and sometimes had conflicts: 
the symbolic against the quantitative paradigm, 
which can be traced up to semiotic conflicts of 
rationalists and empiricists, in terms of NLP or 
behavioristic debates. On one side there is an 
intuitive analysis and often “manually” created 
symbolic rules – and on the other, an automatic 
rule generation given through corrections of nu-
merical parameters of a statistical model. The 
first paradigm has deeper and often  more intui-
tively clear linguistic knowledge of the natural 
language, while the second paradigm is more 
robust and ready to overcome an erroneous in-
put and ambiguities, having better generalization 
capacity in practice, while often showing more 
superficial and shallow linguistic knowledge. In 
the domain of text engineering (a notion met in 
commercial applications like machine translation 
systems and other NLP implementations) it is of-
ten more practical to use automatically generated 
rules, maybe not so descriptive and intuitive, but 
realized in less people-days and other resources, 
while offering results with a quite good perfor-
mance. Of course, specific areas of application 
are not the final reach of these paradigms, and 
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their research activities are continuing to devel-
op in quite a complementary manner. The well-
known IBM’s team under Frederick Jelinek’s 
guidance has built a speech recognition system 
in the mid 70-ties based on statistical methods. 
This was done in the times of the great crises of 
artificial intelligence researches and symbolic 
paradigm in general, after the famous Lighthill 
report in year 1973 (Dreyfus 1974) which was 
well-inspired by poor results of machine transla-
tion at that time and which has undermined the 
financing of such researches for at least a decade. 
During 1990-1994 period in the DARPA MTEval 
initiative, Jelinek’s machine translation system 
that was statistically-oriented and with which 
the language structure had no importance in the 
beginning, CANDIDE, has never shown better 
performance neither from the elder  symbolic-
oriented SYSTRAN, nor from the “opponent” 
Pangloss4 system in that manner, which can be 
explained with the insufficient syntactical and 
semantic knowledge of that system. In the end, 
both CANDIDE and Pangloss became hybrid so-
lutions in order to remain sufficiently robust and 
advanced. There is no general machine learning 
system equally good for all applications and do-
mains3 (Schaffer 1994) and more significant than 
specific solutions at the same time – that is why 
the implicit knowledge is important for machine 
learning (bias) which is present in any symbolic 
theory, or in the conceptual knowledge given by 
well chosen grammatical rules in NLP. From the 
mid 90-ties, taggers and statistical parsing had an 
additional expansion also just by simple growth 
of the raw hardware resources power.

2. Language resources and the quantitative 
approach

The common property of these paradigms are 
language resources like corpus and lexicon. The 
length of the corpus is determined as the length 
of a sequence of words given the sequence of 
words constituting it, and the size of its lexi-

con is measured as the total number of different 
words. An N-gram is a subsequence of length N 
in a sequence of words, and the same N-gram 
can appear many times in that sequence, which 
is the frequency of this N-gram in the text given 
as a sequence of words. Objects of the initial lan-
guage processing can be elements of a document 
such as generalized text, punctuation characters 
or HTML tags for instance, or tokens as a gen-
eralization of notion of words. The complexity 
of annotated corpus, in which every word is as-
sociated with an appropriate tag, is influenced by 
the number of categories in its tagset, which is 
usually determined by its structure which is well 
illustrated in (Džeroski et al. 2000). The structure 
of tagset  is determined by the expressive rich-
ness of a corpus, and it is directly influencing the 
complexity of the tagging problem itself, both 
manual, or automatic with taggers. For taggers 
and computational linguistics in general it is very 
important to have an annotated corpus in a digital 
form (a good example of a development of such 
a corpus is given in the MULTEXT-East14 proj-
ect). This corpus can serve as a “gold standard” 
by which a tagger is trained, and by which per-
formance of a tagger is also being measured in 
terms of machine learning programs. Automatic 
morpho-syntactical text tagging is currently mak-
ing more than 95% correct results.

The paradigms mentioned previously differ in 
the way of describing a language model: the sym-
bolic paradigm is using explicitly given gram-
matical rules, morphological and other rules, 
while in the quantitative approach these rules are 
implicitly given by examples of correct gram-
matical and language constructions (e.g. with an-
notated corpus) and its meaning, or by numerical 
parameters of an appropriate statistical model. A 
lexicon participates in the quantitative paradigm 
also as a part of the model, e.g. established to-
gether with given N-gram frequencies (also, for 
statistic parsers see examples 12, 19, 20) Tree-
Bank18 corpora are very important and interest-
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ing, where whole sentences are being tagged by 
syntax trees). The statistical approach is dating 
from early Shanon’s foundations of information 
theory, with the shortest and most probable hy-
pothesis (Shannon Claude E., Weaver Warren 
1949), and the famous example of a Shannon 
game with the goal of recognizing the next word 
in the sentence (1951, where the actual goal is 
to minimize the entropy). Later in the 1960-ties 
Solomonoff (Solomonoff 1964), Kolmogorov, 
Chaitin, Gold (Gold 1967) and others established 
the foundations of the statistical inductive theory, 
stochastic context-free grammars and language 
identification. Noam Chomsky made a remark at 
that time about the concept of word probability, 
stating that there isn’t any word probability no-
tion that has a reasonable meaning. The further 
advancement of the statistical theory of machine 
learning ((Vapnik  1999), (Mitchell 1997)) has 
later on influenced the better defining of these 
notions and problems, which in turn influenced 
making better practical results. Given no input 
error, a natural language is abundant with prob-
lems for this kind of approach – above all, prob-
lems which come from multiple semantic values 
(polysemy, e.g. “I saw a girl with high tempera-
ture”) and syntactic values of words - e.g. in the 
syntagm “from time to time” program might tag 
differently its part “time to time” also as complex 
form or attribute, or it might tag each single word 
as a preposition or noun, or the whole syntagm as 
one complex token.

In this paper some already prepared corpora 
are used with more details following. There are 
well known English annotated corpus examples 
like Brown’s corpus (around 1000000 or 1М 
words in length, created in 1960-ties) and Su-
sanne corpus which was created from a part of 
Brown’s corpus, National British Corpus (BNC), 
WSJ and PTB (specially the Wall Street Jour-
nal articles used for making the Penn Tree Bank 
corpus). An annotated corpus can be created (by 
part) manually for a given tagset as it was done 

in the MULTEXT-East14 project, where an ad-
ditional CLOG utility was used for the lemmati-
zation preparation by an automated learning for 
each tag (Erjavec et al. 2005). The corpus anno-
tation can be also done on an automatically gen-
erated tagset (in the unsupervised learning man-
ner). A few corpus examples according to the 
Wortschatz project5 as given in table 1 describe 
some of the basic annotated corpora features (M 
= million):

Corpus BNC CLEF Wortschatz

Language English Dutch German

Length 100 M 70 M 755 M

Lexicon Size 25706 21863 74398

Tagset size 344 418 511
Table 1 – several corpus examples

3. Different taggers and machine learning 
methods

In programs which use annotated corpora, 
the language model is above all defined (during 
training phase) by a lexicon and tagset, and im-
plicitly also by a training corpus and its learning 
model which depends on the specific algorithm 
and implementation. That could be represented 
by additional N-gram data as with the TnT tagger, 
rewriting rules (more precisely, rules of changing 
existing tags according to the annotated text as 
given context) as with the Brill’s tagger, or other 
parameters. The language model understood in 
this way differs from the traditional set of formal 
grammatical and other rules which are also pres-
ent in such model, but in a different, quantitative 
form. N-grams as subsequences of length N of 
(consequent) words or tags in a corpus with total 
occurrence of frequencies in the reference cor-
pus contain implicit information about correct or 
at least statistically expected constructions and 
links between words, but making syntax struc-
ture dim on the other hand, which is not that im-
portant for tagging up to a certain limit.
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As mentioned earlier also, first successful tag-
ger implementations have been based on statisti-
cal models like the HMM. Some of the most pop-
ular and efficient taggers today like TnT are still 
using basically the same method or an improved 
form (more in section 4.1). Many improvements 
are concerned about the tagger’s sensitivity to-
wards unknown words (which are not present in 
the lexicon and training corpus) where a great 
decrease of efficiency lies (going up to 50%) 
if no modifications are used (a consequence of 
the shallow quantitive approach). Some taggers 
recognize parts of words or suffixes and pre-
fixes (within given maximal number of charac-
ters) in the lexicon, or follow and use additional 
lexeme features, which can often be specific for 
the given language model or the language itself, 
or use special lexical rules, as in Brill’s tagger 
case, by which the most probable tag is chosen 
for an unknown token. The tagging of tokens can 
be understood as a problem of machine learning 
((Mitchell 1997), (Nillson 2005)) and classifi-
cation, and so in time some non-statistical tag-
gers emerged. The Brill’s tagger is a reference 
example based on rewriting rules that increase 
performance of the tagger. It is achieved by de-
vising rules that involve words beside tags, com-
pared to the standard HMM which uses only tags 
(more in section 4.3). The best results so far1 аre 
achieved by taggers like SVMTool based on the 
SVM classification (more in section 4.5), Stan-
ford PoS Tagger (Stanford NLP Group12) based 
on Bayes networks and a variant of the Maxi-
mum Likelihood Estimation (MLE) method, and 
LTAG21 PoS Tagger which is based on a variant 
of artificial neural networks (ANN). All these 
taggers use the bidirectional learning instead of 
the standard learning which is based on the “left 
to right” direction.

There are many variations of statistical learn-
ing which are not based on the HMM and similar 
models. For instance, MXPOST is a tagger using 
the model of maximum entropy (MEP, see sec-

tion 4.4). The statistical approach is somewhat 
also present in the Brill’s tagger (for the initial 
state), although it is not the essential idea behind 
it, but rather it is the transformation based learn-
ing. Among methods which are not statistically 
oriented there are also distinguished methods 
like the learning based on decision trees which is 
used by Tree Tagger (more in section 4.2), or the 
memory based learning (used by the well known 
Memory-Based Tagger - MBT10) which adds up 
to instance based (lazy) learning (where no train-
ing is needed), among others.

New solutions and tagging implementations 
arise often, there are competitions and confer-
ences2 more or less related to them, where doz-
ens of taggers (and other programs like parsers) 
get evaluated - currently an ongoing “war” for al-
most every tenth of performance percent is being 
fought every day. Apart from accuracy, tagger’s 
speed, its training speed, and the ease of its use 
are sometimes far more important than few per 
mill performance advantages. Some of the most 
popular taggers and associated machine learning 
methods will be shortly described and evaluated 
further on in this paper. 

3.1 The tagger performance
Different criteria can be important or interest-

ing when measuring performance of a tagger, but 
the most important performance mark by far is the 
accuracy of tagging (in functional terms, this is 
according to the machine learning theory exactly 
the same performance measure, just as with any 
other machine learning problem). In this paper, 
compared to the text length, the error of tagging 
for the given text will be defined as the number 
of incorrectly tagged words, while accuracy is 
defined as the number of correctly tagged words. 
Beside this property of a tagger, for these pro-
grams might also be important the speed of tag-
ging and training (determined by the algorithm 
complexity and implementation) as mentioned, 
but not considered with details here. Additional 
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options and capabilities, learning model options 
and the ease of use are also important.

The testing of performance is done by the 
10-fold cross-validation testing, which is also 
used by some learning algorithms for the fine 
parameter adjustment or the optimal model pa-
rameter learning. This testing process starts with 
the dividing of a training corpus in 10 equal par-
titions, and then training starts on one 9/10 of the 
corpus, while the testing is done on the remain-
ing 1/10. This process is repeated 10 times for 
every “9/10+1/10” combination of the training 
and testing, by which 10 results and error rates 
are generated in that way, and the average value 
and its variance is the final measure  which cor-
responds to this method of evaluation. A more 
sophisticated analysis of the performance would 
involve statistics about the class of words known 
to the lexicon, and specially for words unknown 
to the tagger.  In the latter case, the decrease of 
performance can be up to 30-50%. The overall 
State-Of-The-Art1 results for English language 
are about 96-97%, in which unknown words are 
not treated separately, and in the former evalua-
tion method  there should be always at least about 
10% of unknown words in each training corpus. 
All tagging programs here are tested equally by 
the same evaluation method, same learning cor-
pora and same 10-fold testing partitions. Statistics 
gathered here serve principally as a performance 
indicator for comparing different programs, not 
as a measure of the distance from state-of-the-art 
results. The tagger behavior with unknown to-
kens is expressed in the percent ratios (compared 
to successfully tagged tokens, and additionally 
compared to all unknown testing tokens, where 
the result varies within the boundaries of expect-
ed results achieved on similar tests). 

4. Chosen solutions and taggers
The evaluation of taggers in this paper is done 

on texts in Serbian. Taggers were selected as ref-
erence academic and non-commercial tagging 

solutions, and an additional reason of their choice 
is their availability on the web. The input anno-
tated training corpus and the output result for all 
these taggers can be in the vertical format where 
each word and its associated tag are separated by 
a white space in their own separate line:
B i o  V m p s - s m a n - n - - - p
j e  V a - p 3 s - a n - y - - - p  
v e d a r  A f p m s n n
i  C - s
h l a d a n  A f p m s n n
a p r i l s k i  A o p m p n
d a n  N c m s n — n
.  S E N T

Example 1a – vertical text format of annotated 
corpus

and where some taggers can also have lemma in 
that same line beside the tag for the given word. 
The text can also be given in the horizontal for-
mat, where each word is connected by a separa-
tor to its tag, each sentence is given in its own 
separate line, while words are separated by white 
space instead of separate lines (Brill’s tagger is 
using “/” as separator, while MXPOST is using 
“_”):
B i o / V m p s - s m a n - n - - - p   j e /
V a - p 3 s - a n - y - - - p   v e d a r /
A f p m s n n
i / C - s   h l a d a n / A f p m s n n   
a p r i l s k i / A o p m p n   d a n /
N c m s n — n  
. / S E N T
Example 1b – horizontal text format of annotated 

corpus

Each of these programs has an appropriate 
utility of its own that is used on a given training 
corpus for building a language model which is 
usually represented by a set of specific files with 
available learning options.

4.1 TnT - Trigrams’n’Tags
The ТnТ7 tagger (Trigrams’N’Tags), whose 

author is Thorsten Brants, Saarland University in 
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Germany, Computational Linguistics and Phonet-
ics department, has emerged in the period 1993-
2000 (Thorsten Brants 1999, 2000). This tagger 
is using machine learning based on the HMM 
which is a case of Bayes learning and it repre-
sents an example of the class of machine learning 
algorithms that use probability estimation given 
by the acyclic directed graph of computation 
(Bayesian network) defined by the conditional 
dependence relation among random variables 
as nodes. The computing problem then comes 
down to the classification problem with such a 
probability computing network where one finds 
the most probable sequence of tags for the given 
sequence of words. The HMM is a Bayesian net-
work whose node set is divided in two partitions: 
the set of hidden events or states, and the set of 
observations or symbols. Each state has different 
observations which depend only on that state in 
the sequence of states which is described by the 
symbol emission probabilities, while the hidden 
state can depend on all previous hidden states in 
the sequence. Order of the HMM model is de-
fined by the number of previous states on which 
current hidden state depends (for instance, with 
second order HMM each hidden state depends 
only on two previous adjacent hidden states). 
In the tagging problem, the set of hidden states 
represents tags, while the set of observations 
represents words in the text. The HMM model is 
given by probability distributions of initial states 
and transitions from one state to another. Basic 
questions in this case are: how to determine the 
most probable sequence of hidden states for the 
given sequence of observations (the decoding 
problem), and how to learn model parameters in 
order to maximize the probability of sequence of 
observations in the given training set (the learn-
ing problem). ТnТ is an example of a successful 
statistically based (stochastic) tagger, based pri-
marily on the Viterby’s algorithm for decoding 
second order HMM, and on N-grams and inter-
polation (smoothing) for the problem of normal-

ization for learning using the Baum-Welch algo-
rithm, (Rabiner 1989), (Welch 2003).

TnT is truly an example of a tagger that is 
comfortable to use, learning fast and also tagging 
fast. This system is using several types of data 
files. For the learning it is sufficient to have an an-
notated input corpus in the vertical format whose 
file name having no extension is later used as the 
model name. Each sentence must be ended by a 
token with tag SENT, or by a tag specified with 
option “-st”. This system uses several data files 
generated by the learning which can be modified 
afterwards. There is a lexicon as a file in the ver-
tical format having at least 4 columns  separated 
with white spaces: the first column contains the 
word (token), the second column contains its fre-
quency in the training corpus, the third column 
contains the appropriate tag, and the fourth col-
umn contains the frequency of that tag. Many tags 
for the given word are allowed, and each tag is 
followed by its frequency, while the sum of such 
frequencies is equal to the word’s frequency.  Be-
side this file, there is also an N-gram file, a tagset 
list, and a special file for tag mapping which can 
be used to change tag names in the output file dif-
ferently from the existing source model. 

This program does not support lemmatiza-
tion. Its availability and licensing is somewhat 
different from what is usual with the open source 
programs. One can obtain download access for 
the programs for learning and tagging (and may-
be the source code) only by addressing the author 
directly via e-mail, while it is generally available 
for academic and non-commercial purposes for 
free. It is created and tested before all on Posix 
(Unix, Linux) platforms.

4.2 Tree Tagger
The author of Tree Tagger (ТТ) is Helmut 

Schmid6 (Schmidt 1994), Institut fuer maschinelle 
Sprachverarbeitung, Stuttgart University in Ger-
many. It was created during 1994-1996. as part 
of the TC project. Tree Tagger is not a true sto-
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chastic tagger example compared to other known 
programs that use the HMM because it differs in 
the way it is learning, yet its tagging is done by 
Viterby’s algorithm, too. The decision tree learn-
ing algorithm is used for the training (similar to 
ID3 and C4.5 algorithms), with the aid of trigram 
model. The decision tree is pruned after being 
built by the information gain rule, which is im-
portant for overcoming the learning problem of 
over-fitting and and for making the optimal algo-
rithm performance.

The TT lexicon consists of three parts: the 
full-form lexicon, the suffix lexicon with suffices 
up to 5 characters in length, and the given de-
fault value used if word is not found in the for-
mer parts of lexicon. If a word is not found in 
the full-form lexicon during the tagging process 
even after changing its capitalization,  the suffix 
lexicon is then searched by using suffix decision 
tree. The suffix decision tree is built during the 
training process just as the previously described 
tagging decision tree is built: for each word an-
notated with a tag from the open class tagset, 
character by character of the word suffix. Ad-
ditionally, each parent node has a default child 
node marked with the probability which added to 
the sum of other children is equal to 1, and if it is 
the only branch left it is then pruned. Leaves are 
labeled with probability vectors of tags with the 
given suffix.

For tagging it is sufficient to provide the in-
put file and the parameter file produced in the 
training. The list of tags in the open class is the 
list of tags available for the unknown words. The 
tagging can be done without lemmas in the lexi-
con, for instance by giving the same “dummy” 
value to all the words in the lexicon, e.g. “-”. The 
input file is in the vertical format, and so is the 
output file. The learning and model generation 
is quite simple, though lexicon and open class 
data files have to be prepared additionally be-
fore that (eg. by additional script22, refer to Sec-
tion 5) beside the annotated training corpus. The 

model produced is stored in a binary parameter 
data file. Here is a part of a lexicon file given in 
the Example 1: 

p r i s l o n i  V m i a 3 s - a n - n - - - e  
p r i s l o n i t i  
t a l e n t a  N c m s g - - n  

t a l e n a t  
g u t l j a j u  N c m s l - - n  

g u t l j a j  
n a g n u t  V m p - - s m p n - n - - - e  
n a g n u t i  
V i n s t o n o v o  A s p n s n   
V i n s t o n o v  A s p n s a   
V i n s t o n o v
Example 1 – a part of a lexicon in the Tree Tagger

Tree Tagger supports lemmatization opposed 
to other taggers described here. The licensing is 
similar to the TnT licensing - it is free for non-
commercial and academic use, and it also is not 
an open source program (unless an agreement 
is made somehow directly with the author him-
self), while the program is freely available for the 
download. It is available both for Posix and for 
Windows operating system.

4.3 Brill – Rule Based Tagger (RBT)
Eric Brill8 (Brill 1992) is one of the pioneers 

of the transformation learning (Transformation-
Based Learning) and the creator of the RBT tag-
ger (Rule Based Tagger) founded on this model 
of learning. It was developed in the period 1992-
1994 and it has set many standards for taggers 
at the time. In some parts it is realized as Perl 
scripts because Brill promotes the idea that this 
is a perfect programming language and tool for 
linguistic researches due to its abundance and 
capabilities of sequence processing and regular 
expressions, but this is also the reason why his 
implementation of training is very slow. This sys-
tem represents one of the basic tagger examples 
which are not mainly statistical, but instead, this 
tagger is based mainly on the incremental contex-
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tual transformation rule learning. It is using the 
rewriting rules which achieve the performance 
improvement by choosing result with the highest 
estimation of accuracy, or in other words, with 
the lowest tagging error. In essence, the tagging 
is done in two stages: in the first stage, the start-
ing state of the input corpus is initiated by using 
its lexicon, and intrinsic and lexical rules of the 
model. In order to overcome the HMM limita-
tions of using only tag N-grams, Brill proposed 
and invented transformations which refer both to 
tags and words. Then, in the second stage, the 
tagging performance is increased by applying 
contextual rules of the trained model. These rules 
are similar to lexical rules, with a second tag add-
ed which replaces the source tag - all rules sup-
pose one of the several types of conditions, and 
in essence change the tag after being triggered if 
the condition is true. The learning consists of the 
lexical rules learning phase, and the context rules 
learning phase driven by the least tagging error. 
In the latter phase the error is estimated itera-
tively for each candidate rule before and after the 
transformation, and then the best available rule 
by the mark is chosen and put into  the rule set 
until there is no applicable rule left with the error 
under the default error rate threshold. This tagger 
has “built-in” lexical rules for unknown words 
and for words which begin with a capital letter: 
they are considered as proper nouns automati-
cally (taken as nouns, otherwise), after which the 
unknown words subprogram is applied. In short, 
taking suffixes up to 4 characters in length and 
searching for the known sub-words in the lexi-
con, and learning new rules if found.

The model data generated by the learning is 
stored in text files. The input training annotated 
corpus is expected in the horizontal format, and 
so is the generated output. The learning process 
is not simple, and it is done in several stages: the 
tokenization (given in the vertical format by the 
Penn Tree Bank standard, for example: “The/det 
cat/noun sat/verb on/prep the/det mat/noun ./.”), 

the dividing (splitting) of the annotated training 
corpus into the training corpus for lexical rules 
and into the partition for contextual rules, sepa-
rately. One of the limitations of this program is 
the slow learning speed, but this can be controlled 
by appropriate setting of the error rate threshold. 
This tagger is intended to be used incrementally 
by increasing and changing the set of rules with 
new and smaller training corpora. The learning 
is stopped when the error reaches the threshold 
value hard-coded in the very Perl code, and the 
whole learning procedure is far too complicated 
and demanding compared to other taggers. The 
detailed description and instructions for this and 
other tools are available for download22.

This tagger does not support lemmatization. 
RBT and its source code are available for free 
without limitations, but under a license which is 
of an open source type. Though there are imple-
mentations for different platforms, including 
Java as a platform, the learning in basic form is 
not supported on Windows operating system. 

4.4 MXPOST
Adwait Ratnaparkhi, working currently in the 

Yahoo! company,  is the author of the MXPOST11 
(MX shortly) tagger which he developed dur-
ing 1996-1999. This tagger is using a statistical 
concept of learning and a method of Maximum 
Entropy Principle (MEP shortly, (Adwait Ratna-
parkhi, 1996)), which is under some conditions 
dual to the previously mentioned MLE. This 
learning concept maximizes the conditional en-
tropy of the learning model on a given training set 
instead of maximizing the likelihood. A bigger 
entropy of the learning model means that there is 
more information coded in the model parameters. 
This program (MX) is closer to the Brill’s tagger 
and SVMTool by its slow learning speed, which 
is still slower for an order of magnitude in case of 
two latter taggers. The training of this tagger is al-
ways done in 100 iterations regardless of whether 
the learning performance is reached or not.
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The data file with learning examples has simi-
lar horizontal structure to the one that Brill’s RBT 
is using, only that it uses “_” sign as separator for 
token and its tag. The output file is in the same 
format. The learned model data is stored into text 
files in a separate model directory.

This program does not support lemmatization. 
The original implementation is realized as Java 
program and it is still available as a somewhat 
test version. MX is free for non-profit purposes, 
freely available for download and it is not open 
source.

4.5 SVMTool
Authors, Jesus Gimenez and Lluis Marquez, 

created SVMTool9 during 2000-2004 under the 
TALP Research Center NLP group, Universitat 
Politècnica de Catalunya. This is one of the pro-
grams by which a “state-of-the-art” result was 
reached based on WSJ corpus, and a program 
with the richest range of options for the train-
ing and influence on the process of tagging. It 
supports, among other features: bidirectional 
learning and tagging, cross validation of results, 
special language exceptions and dictionary cor-
rections, different learning models, and other. 
This leads also to one of the main deficiencies 
of this tagger, which is the inefficient learning. 
In short, the idea is to code different text features 
into a sequence of frames or windows of a giv-
en width  measured by tokens, centered around 
the token that is currently analyzed, and with 
the default width 7. There are features of words 
(whether a word is capitalized or not, punctua-
tion and special signs, numbers, etc), and also 
N-grams, tags, and other features. The vector 
of such features is then classified by the SVM 
algorithm, where each class represents an ap-
propriate tag. Vapnik prepared theoretical ideas 
for the Support Vector Macihne classifier (SVM, 
(Vapnik  1999)) already in 1963. This classifi-
cation method is a method of maximum margin 
hyper-plane classification, because the goal for 

these classifiers is to determine the hyper-plane 
which separates the classification space into two 
partitions (half-spaces) in that way that the near-
est distance between this margin hyper-plane and 
a class instance is maximized. SVM additionally 
minimizes the classification error by using nu-
merical solving of a quadratic programming (QP) 
problem. SVMTool uses one of the most simple 
and most efficient implementations, SMO (Se-
quential Minimal Optimization9), (Platt 2000). 
SVM methods can be easily transferred into non-
linear methods by using non-linear kernels (Aiz-
erman’s ,,Kernel trick”) and represent one of the 
most efficient known classifiers today.

The input training annotated corpus and the 
output result are in vertical format, with the plain 
space instead of white space. For the learning it 
is necessary to set configuration parameters in a 
text file, either with a short or with a complex 
template available. More than two hours for a 
2500 word corpus were not enough for it to con-
verge with the longer template, while with the 
shorter template it takes only slightly less than 
Brill’s tagger. The more advanced usage option 
considers detecting SVM model parameters 
based on the fine tuning by validation on training 
set, but the main question is if the training lasting 
several times longer than usual just for a per mil 
or few of higher accuracy is really justified.

This tagger does not support lemmatization. 
Authors are offering the program in Perl under 
the open source LGPL and FSF license and it is 
not fairly tested on the Windows operating sys-
tem. It is freely available for the download, but 
the program relies on an external tool SVMLight 
whose author is Thorsten Joachim, which is also 
open source, but author’s permission is needed 
for any commercial purpose.

5. The evaluation of selected taggers
The process of evaluation of taggers selected 

for testing in this paper is done automatically 
with a script that enables this in following steps: 
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• input corpora data files are transformed into 
vertical text form with appropriate XSLT trans-
formations  giving the output result in out1.txt 
for whole corpus;

• initialization of stat_TAG.txt files with sta-
tistical counters, where TAG belongs to set {TNT, 
TT, RBT, MX, SVM} of chosen taggers;

• main loop, script is executed in 10 iterations, 
for variable n in range from 0 to 9

• by using additional script cross-tab10.sh the 
training corpus learn.txt and testing corpus test.
txt is prepared as n-th “9/10+1/10” partition of 
whole corpus;

• for each tagger TAG gets transformed cor-
pus and  other needed files prepared using АWК 
scripts, training is started afterward and then tag-
ging of unannotated corpus for testing;

• tagging result in vertical form of tagger TAG 
is in file test_TAG0.txt, and earlier prepared an-
notated test corpus is in file test_TAG.txt; verti-
cal form enables easier comparison between the 
resulting annotation and the source;

• for each tagger TAG counters are updated 
for unknown words using additional scripts un-
known.sh and unknown.awk (incorrectly tagged 
word are searched in the training lexicon, and if 
not found there they are treated as unknown);

• aggregated statistics are made using addi-
tional scripts report1.аwk and report2.awk;

• file clean-up is done for the data and tempo-
rary files created during the training process;

This automated testing process and the tagger 
evaluation offer the opportunity of easier extend-
ing with additional taggers in later evaluations 
and their comparison with earlier testing results, 
making the evaluation process and statistics 
computation less prone to errors, and above all, 
it represents a convenient working environment 
for experimenting with taggers. The possibility 
of the integration of different taggers and their 
training parameters and models is also very in-
teresting, even for different tagsets and corpora. 
For instance, as described in (Jakub Zavrel, Wal-

ter Daelemans 2000), with the Bootstrapping 
method the learning with new tagset is achieved 
with a much smaller number of examples, and 
also its tagging performance is not smaller or 
at least slightly better than the performance of 
each single tagger. A simple way of the tagger 
integration with some performance improvement 
is done by using the voting method – a tag is 
chosen as the result if it’s selected or given the 
best marks by the largest number of taggers. The 
further approach might be the choice made by a 
second level machine learnt experience based on 
different  taggers, their tagsets, parameters and 
input.

All these taggers were installed by their in-
stallation manuals without any bigger difficul-
ties. The total script execution time for the train-
ing and tagging is based on the Intel(R) CoreTM2 
Duo CPU/T7700@2.40GHz processor plat-
form, which is described later in this paper. Li-
nux Fedora FC8 is selected as the OS platform 
for testing because many programs (TnT, RBT) 
do not support learning on non-Posix platforms 
or have some other limitations. However, the 
main reason for this choice is the comfortable 
working with strings, regular expressions, com-
mand piping and numerous handy  tools for the 
text processing like word and line counting, dif-
ference matching, powerful scripting languages 
and other. All scripts developed here are avail-
able for downloading22, together with refer-
ence papers with detailed explanations, and a 
completely prepared tagging environment with 
scripts.

5.1 Corpora
The basic property of an annotated training 

corpus is its length, or the number of tokens in 
the sequence of annotated tokens which repre-
sents the corpus text. But, the size of the set of 
tokens which constitute a lexicon based on a cor-
pus can be more statistically important because 
the word distribution is not changing much with 
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a big enough length according to Zipf’s law. A 
very important property of a corpus is its annota-
tion tagset size. The tagset can be complex and 
of big cardinality, which influences the most per-
formance of a tagger. The tagset size depends on 
the tagging concept, meaning what is expected 
to be achieved by the tagging, and it also de-
pends on the language itself. For instance, Serbi-
an language is certainly more demanding in that 
manner than English if the language case is used 
in tagging, too. Beside that, different taggers are 
differently sensible to the input corpus infor-
mation quality. The smaller but certain number 
of errors can significantly decrease the tagging 
performance (for instance, an incorrectly tagged 
token in the training corpus, or a punctuation 
missing at the end of a sentence in the training 
corpus can produce tagging errors later). Some 
minor errors can be detected and manually cor-
rected if script shows an error during the test, 
others can be corrected by a simple lexical pro-
cessing – but many of them remain “hidden”. 
All taggers are trained with their default training 
parameters, without any special changes (and 
are equally treated in that way). Of course, some 
taggers might have been able to give a better 
performance, but only with the additional effort 
and specific customizations. 

Two types of input data files were used 
throughout the process of evaluation for build-
ing training corpora. The first type has the XML 
structure by CES15 standards, having in short: 

• each word with an XML tag mw that has the 
attribute: 

- id for a unique identifier,
- lex giving lexeme or token, word,
- lemma for lemma of the given token,
- tag for its tag.
• each sentence with an XML tag seg and the 

attribute id which identifies it uniquely
• each page marked by an XML tag p, and the 

division by an XML tag div 

Example of such a data file and its structure 
is given in the Example 2 which is the part of 
the file 02HP-SR-Lemma.xml , and it is 
transformed into a needed plain text format with 
an appropriate XSLT transformation by using 
data.xsl from the Example 3: 
<Annotation type=”morpho”> 
  <body> 
    <div> 
      <head> 
        <mw id=”mw__1 “ lex=”ZAKLJUCAK” 
lemma=”ZAKLJUCAK” tag=”?”/> 
      </head> 
      <p> 
      <seg id=”n1”> 
        <mw id=”mw_1_1 “ lex=”Na” lemma=”na” 
tag=”PREP+p4”/> 
        <mw id=”mw_1_2 “ lex=”međunarodnom” 
lemma=”međunarodni” tag=”A”/> 
        <mw id=”mw_1_3 “ lex=”planu” lemma=”plan” 
tag=”N”/> 
        <mw id=”mw_1_4 “ lex=”poslednjih” 
lemma=”poslednji” tag=”A”/> 
        <mw id=”mw_1_5 “ lex=”decenija” 
lemma=”decenija” tag=”N”/> 
        <mw id=”mw_1_6 “ lex=”preduzeti” 
lemma=”preduzeti” tag=”V+Perf+Tr”/> 
        <mw id=”mw_1_7 “ lex=”su” lemma=”jesam” 
tag=”V+Imperf+It+Iref”/> ... 
      </seg> 
      <seg id=”n2”> ...

Example 2 – the XML structure of corpus 1 and 
corpus 2

<?xml version=”1.0” encoding=”UTF8”?> 
<xsl:stylesheet version=”1.0” 
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”text” omit-xml-declaration= 
                               ”yes” indent=”no”/> 
  <xsl:template match=”//seg”> 
    <xsl:for-each select=”mw”> 
     <xsl:value-of select=”@lex”/>~ 
     <xsl:value-of select=”@tag”/>~ 
     <xsl:value-of select=”@lemma”/>~
    </xsl:for-each>*SENT* 
  </xsl:template> 
</xsl:stylesheet> 

Example 3 – data.xsl

The second type of data files used for the 
evaluation are prepared according to TEI16 rec-
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ommendations. It is using an XML notation, too, 
but with some differences in the structure: XML 
tags and attributes are not the same, and lexemes 
are not given as attributes but as values of the 
XML tag w. The TEI standard includes a manda-
tory header with the bibliographic data, informa-
tion about code page, about the structure of the 
file and many other meta data, and also many ad-
ditional structures (e.g. describing the semantic 
structure of the tagset).

<TEI.2 id=”Osr” lang=”sr”> 
  <teiHeader creator=”CK” status=”update” ... 
id=”Osr.teiHeader”> 
    <fileDesc> 
        <titleStmt> ... </fileDesc> 
    <encodingDesc> 
        <projectDesc> ... </encodingDesc> 
    <revisionDesc> ... </revisionDesc> 
</teiHeader> 
<text lang=”sr” id=”Osr.”> 
  <body> 
    <div id=”Osr.1” type=”part” n=”1”> 
    <div id=”Osr.1.2” type=”chapter” n=”1”> 
      <p id=”Osr.1.2.2”> 
        <s id=”Osr.1.2.2.1”> 
          <w lemma=”biti” ana=”Vmps-sman-n---p”>Bio 
</w> 
          <w lemma=”jesam” ana=”Va-p3s-an-y---p”>je 
</w> 
          <w lemma=”vedar” ana=”Afpmsnn”>vedar 
</w> 
          <w lemma=”i” ana=”C-s”>i</w> 
          <w lemma=”hladan” ana=”Afpmsnn”>hladan 
</w>
          <w lemma=”aprilski” ana=”Aopmpn”>aprilski 
</w> 
          <w lemma=”dan” ana=”Ncmsn--n”>dan</w> 
          <c>;</c> 
...  <!-- pb n=283 --> 
      </p> 
    </div> 
  </body> 
</text>    </TEI.2> 

Example 4 – the XML structure of corpus 3 
according to TEI

An example of this form is given in the Ex-
ample 4 as part of the file oana-sr.xml . 
Appropriate XSLT transformation which is pro-

ducing output similar to the previous data form 
is used in a similar manner. After that, other pro-
cessing tasks follow in awk scripts which bring 
the final vertical form of the annotated training 
corpus.

• Three corpora are used for the evaluation 
which will be referred in this text as corpus 1, 
corpus 2 and corpus 3 (source files on which they 
were built are available for download22):

• corpus 1 is created from the file 01HP-
SR-Lemma.xml  which represents part of 
the document “Helsinške sveske br. 15, nacio-
nalne manjine i pravo”0 in CES format which 
also have 02HP-SR-Lemma.xml and 
03HP-SR-Lemma.xml  files

• corpus 2 is created by the concatena-
tion of files 01HP-SR-Lemma.xml, 
02HP-SR-Lemma.xml, 03HP-
SR-Lemma.xml , and additionally Ra-
diodif-SR-lemma.xml and Ra-
dionica-SR-lemma.xml  which 
contain Serbian Radio diffusion Law0 and mate-
rials from UNDP workshops; they are all in CES 
format and of size 1-2MB

• corpus 3 is created from the file oana-sr.
xml in TEI form of Orwell’s “1984”, with the 
size around 4.5MB

The semantic structure of a tagset which is 
also known as MSD, the morpho-syntactic de-
scription, that is used in corpus 1 and corpus 2 
is not the same as in the corpus 3. Namely, cor-
pora 1 and 2 have only types of words coded 
and each token there has its lemma, while the 
corpus 3 is coded with more details22, according 
to morpho-syntactical description developed in 
the MULTEXT-East project. The corpus 3 con-
sists of the text of the Orwell’s novel ,,1984” 
(Krstev Cvetana et al. 2004) which is developed 
in the course of the European MULTEXT-East 
project13 as a parallel multi-lingual corpus. By 
the TEI standard, MSDs are given in the librar-
ies of feature structures. For example, as part 
of the previously mentioned MULTEXT-East 
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project14 a verb is described with 15 features, of 
which two with possible values are as given in 
the Example 5:
 
Verb (V) 
**** **** **** **** **** **** **** ----  ----   ---- ----  ----   ----   ----   ---- 
PoS Type VFrm Tens Pers Numb Gend Voic Neg Def Cltc Case Anim Clt2 Aspt
**** **** **** **** **** **** **** ----  ----   ---- ----  ----   ----   ----   ---- 
= ========= ========= = EN RO SL CS BG ET HU HR SR 
P  ATT             VAL              C x x x x x x x x x 
= ========= ========= = 

1 Type main m x x x x x x x x x 
 auxiliary a x x x x x x x x x 
 modal o x x x x  x  x x 
 copula c  x x x    x x 
 base b x 
-  -------------- -------------- - 
2 VForm indicative i x x x x x x x x x 
 subjunctive s  x 
 imperative m  x x x x x x x x 
 conditional c x  x x  x x x x 
 infinitive n x x x x  x x x x 
 participle p x x x x x x  x x 
 gerund g  x   x x 
 supine u   x   x 
 transgressive t    x 
 quotative q      x 
-  -------------- -------------- - 
...  

Example 5– MSD structure

As a part of this project a special tagger To-
TaLe14 was developed (Erjavec 2005), and also 
TnT and MBT were used.

6. Results
Results generated with the previously de-

scribed process for all three corpora are present-
ed in Tables 2a, 2b and 3 in which mark * is used 
to determine results on known words, mark ** 
is used on unknown words, while mark *** is 
related to the training set. Length, size and lem-
mas refer to the appropriate corpus properties 
expressed as the number of distinct words, where 
K stands for 1000 words. Table 2a is a general re-
view about test and corpora used for all taggers, 
while Table 2b shows the performance rate for 
each tagger independently from the word class 
together with rate of unknown words among un-
successfully annotated ones (**, a smaller per-
cent is better). The Table 3 is showing a better 
tagger performance concerning unknown words 
because it gives the proportion of incorrect un-

known words and all unknown words in the test 
corpus (**), and for known words the proportion 
of correctly tagged words and the rest of the test 
corpus is given (*, a larger percent is better). This 
table shows a better perspective about tagging re-
sults for word classes compared to previous, but 
it also has less meaning about the overall tagging 
performance. Corpora 2 and 3 are not much dif-
ferent in the number of tokens, but these differ 
significantly in the number of tags in the tagset. 

Tagger / Corpus Corpus 1 Corpus 2 Corpus 3
length 7.5К 75К 105К
size 2.5К 11К 18К
n/o 
lemmas 1.6К 5К 7.6К

n/o tags 79 129 908 
Overall test 

duration 22min. 9h : 50min. 5 days,
1h : 29min.

  ***
average

size
2290–
2378  

(2335)

9766–
10952 

(10368)

16550-
17372 

(16919)

n/o tags 73 – 79
(77)

120 – 129 
(126)

840 – 897 
(884)

Table 2а – basic properties of the tests and corpora

Tagger/
Corpus Corpus 1 Corpus 2 Corpus 3

% % ** % % ** % % **

TT
average 85.44 64.93 94.39 33.30 79.65 35.05
std. 
dev. 3.90 3.87 1.86 20.25 1.92 1.85

SVM
average 84.93 64.70 94.27 38.02 85.24 34.67
std. 
dev. 3.60 5.51 1.72 22.61 1.87 2.27

TnT
average 86.18 67.65 94.11 37.42 85.47 32.26
std. 
dev. 3.60 4.33 1.65 21.85 1.75 2.19

MX
average 82.69 54.01 92.78 29.43 82.07 28.62
std. 
dev. 3.84 2.49 1.79 16.93 1.79 16.93

RBT
average 84.96 82.15 93.14 47.24 85.20 37.96
std. 
dev. 4.34 4.32 3.21 26.29 1.95 1.97

Table 2b

The tagging speed is not measured here, but 
the measure of total time for the training and 
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evaluation is given (overall test duration). ТnТ is 
certainly the champion of both tagging and learn-
ing speed, and his performances have proved as 
best, and so did its simplicity of usage.

Tagger Corpus 1 Corpus 2 Corpus 3

* % ** % * % ** % * % ** %
ТТ 98.37 56.71 97.53 71.49 91.78 36.79
SVM 98.29 55.18 97.69 67.17 93.98 54.60
TnT 98.54 57.50 97.57 67.17 93.86 58.36
MX 97.43 57.01 96.48 69.09 92.06 54.26
RBT 99.10 43.96 97.97 48.17 94.24 50.33

Table 3

The script which divides the whole corpus 
into partitions for learning and testing is reading 
the corpus in sequential order, by the equal num-
ber of sentences for each partition. This maybe 
isn’t ideal at the first glance, and it could be im-
proved by a random choice of sentences as it is 
done in the divide-in-two-rand.prl in RBT, or 
by using corpora of a bigger length. In the test 
procedure described here, some of the testing 
partitions in the second corpus were practically 
left with no unknown words, and that caused the 
unusually big standard deviation for unknown 
words – on the other hand, that made a more re-
alistic test. Thorsten gives7 results with a stan-
dard deviation of 0.13 for Penn Treebank (0.76 
for Susanne Corpus in English, 0.29 for NEGRA 
corpus in German), which shows a standard de-
viation comparable with results presented in this 
paper. Of course, such a comparison with statisti-
cal data in other papers is not a complete way to 
prove that conclusions are correct here, but it de-
scribes well important tagger properties. Among 
the given references in this area there are more 
detailed proofs about nature of taggers and their 
performance.

7. Conclusions
Results obtained from (Erjavec et al. 2005) 

are given here in Ttable 4 for two taggers and 
are based on Orwell’s “1984”13 as a MULTEXT-

East resource, too. These results are comparable 
with results presented in this paper for ТnТ tag-
ger both for unknown words (having here even 
somewhat better result), and for known words. 
Similar results on the very same corpus 3 bring 
even more sense to a comparison of the tagging 
results in this way. Although the greater num-
ber of tags in the corpus 3 compared to corpus 2 
had significant impact on its performance decay, 
while corpus 2 has achieved performance close 
to the state-of-art results (or almost the best re-
sults), still the test with corpus 3 is more realistic 
and therefore more usable.

TnT MBT
Known 93.55% 93.58%
Unknown 60.77% 44.45%

Table 4

Judging upon the Table 2, the TnT tagger has 
shown better performance for corpora 1 and 3, 
while the Tree Tagger has “won” in case of cor-
pus 2, but by a per mil. If  Table 3 is considered, 
one can find that RBT is making a better perfor-
mance on corpora 1 and 2, and so is Tree Tagger 
better on corpus 3, concerning unknown words. It 
can be also concluded from that table that Brill’s 
RBT has better results than other taggers in tag-
ging known words, but this should not be treated 
as an important performance indicator because 
differences are too small. The final conclusion  in 
general might be that Tree Tagger does somewhat 
better with smaller tagsets, but in all other cases 
TnT is obviously much better and is making an 
“easy victory“. In the end, all these differences 
might be also considered as very small and SVM 
is also very close to all these good results.

Each of these programs can be tuned and ad-
ditionally customized up to some point in order 
to achieve somewhat better results where SVM-
Tool has by far more capabilities than all other 
tested taggers, but its training performance be-
comes very poor depending on the training cor-
pus. BNC corpus is about 1000 times longer than 
corpus 3, while having a three times smaller tag-
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set and a slightly smaller number of tokens than 
corpus 3 which is even more important – so, the 
tagset size is most important. Corpora such as the 
corpus 2, with a smaller tagset (and even a small-
er length) are ideal for exploring several taggers 
and methods, and for comparative testing of their 
performance,  but they are not good for a real 
exploit. The unexplored challenge is to reveal the 
maximally achievable performance reach of all 
these taggers on Serbian.

The optimal corpus length and size as a train-
ing set is one of the important achievements of 

statistical theory of machine learning – it is shown 
that it depends only on the desired error magni-
tude and the learning probability, and also on the 
size and structure of the hypothesis space (details 
available in (Vapnik  1999) and (Nillson 2005)). 
The corpus (like corpus 3) is certainly more im-
portant for finer investigations and sophisticated 
performance, while having in mind over-fitting in 
learning (a too big training set can degrade per-
formance and generalization abilities) which is 
handled good by all tested taggers themselves im-
plicitly with different mechanisms of their own.
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18 treebanks: PTB http://www.cis.upenn.edu/~tree-
bank/ 
 ICE http://www.comp.leeds.ac.uk/amalgam/tag-
sets/ice.html
19 Michael Collins 1998. PhD http://people.csail.mit.
edu/mcollins/
 ftp://ftp.cis.upenn.edu/pub/mcollins/PARSER.tar.
gz 
20 Dan M. Bikel http://www.cis.upenn.edu/~dbikel/
21 LTAG POS Tagger http://www.cis.upenn.edu/~xtag 
/spinal/  
22 download: http://users.hemo.net/shoom/taggers.
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