
INFOTHECA – Journal of Informatics and Librarianship	 № 1-2, vol X, June 2009

Free software lives its own life, no one being 
able to lock its code. If you want to build your 
own version of a free software, you can, as does 
Novell that produces its own version of Open Of-
fice (freedoms 2 and 4).

A free software is free of access without any 
constraint. For instance, you don’t have to regis-
ter any information (freedom 3). You can freely 
get it and share it. A major consequence is that 
free software is free of charge.

Basically, “free software” and “open source” 
mean the same. The only difference is a philo-
sophical one. The free software community’s 
motivation is generosity: bringing free knowl-
edge to humanity. The open source community’s 
is that it is more efficient to work in common, 
everyone bringing one’s own expertise in a “let 
do the guy who knows” perspective. 

However, the term “free software” may be 
confused with “software that costs zero”, so I 
prefer the term “open source”.

Academic software
Many academic scientists produce software, 

sometimes in the frame of industrial partnership, 
sometimes not, for instance to implement an idea 
as a proof-of-concept for a scientific paper. In 
this paper, “academic software” means any piece 
of software written by an academic.

With such a definition, open source academic 
software seems to be incompatible with industrial 
constraints. However, open source software can be 
integrated into private software, if it has such a li-
cense as GNU’s LGPL2. This license allows users 

Everyone has heard about “free software” 
and “open source”, but what those terms actually 
mean is not always very clear, even for people 
that produce software. First of all, I will briefly 
explain those terms, and the reader will see that 
the open source philosophy has many ideas in 
common with Science. Then, I will define what 
I mean by “academic software” and I will pres-
ent some arguments in order to show that Sci-
ence would benefit a lot if scientists that produce 
software released them as open source.

Free Software and Open Source
According to Richard Stallman, the creator 

of the Free Software Foundation, the term “free 
software” stands for a set of constraints1:
	freedom to run the program, for any pur-

pose; (1)
	freedom to study how the program works, 

and adapt it to your needs. Access to the source 
code is a precondition for this; (2)
	freedom to redistribute copies so you can 

help your neighbor; (3)
	freedom to improve the program, and re-

lease your improvements to the public, so that the 
whole community benefits. Access to the source 
code is a precondition for this. (4)

The main idea is that such software can be used 
and improved by anyone, with no restriction but 
one: if you modify the code of a free software, you 
have to publish the code of the modifications. 

Free software can be used without any restric-
tion. An example of common restriction is “for 
non commercial use only” (freedom 1).

Why academic software should be Open Source

Sébastien Paumier

Institut Gaspard-Monge, Université Paris-Est Marne-la-Vallée



52a

to link private code with open source code, with-
out having to publish it as open source. So, in a 
cooperation context, academics can produce open 
source software, while industrial partners produce 
private code that will not be free software.

I make a distinction between academic soft-
ware and software that involve scientific known-
ledge written by non-academics, because in the 
latter case, programmers are often engineers paid 
by private companies whose goals are different. 
Producing scientific knowledge is one thing; pro-
ducing reliable user-friendly software is another. 
There is often a gap between a prototype and a 
final product, and it is not shocking that compa-
nies produce private scientific software, because 
they offer value added like graphical design, 
handling of many file formats, plugins, main-
tenance, etc. There are many examples of open 
source projects that have a commercial destiny. 
For instance, the open source Linux distribution 
Fedora is the basis of the commercial distribution 
Red Hat, whose core business is to select and test 
stable versions of Fedora and to guarantee com-
patibility with recent hardware as well as with 
major software products like Oracle.

Now, I will try to convince you that academic 
software should be open source.

Collective responsability and efficiency
Open source software has no master that de-

cides of its evolution alone. For instance, if the 
authors of an open source software component 
decide to change its theoretical paradigm, users 
can decide to keep using the current version if 
it fits their needs. For instance, if your favourite 
open source calculus system has changed the + 
disjunction symbol into the U one, you can patch 
it to preserve the previous behavior in order not 
to mess all your existing programs. On the con-
trary, you can create dissident branches accord-
ing to your own goals. With open source, you do 
not depend on a particular person or group. 

This freedom is important, because when 
there is a bug or a missing feature in private soft-

ware, users that are not computer scientists have 
to find tricks to handle the problem, most often 
with script languages like Perl and Python. In 
some cases, users can waste amazing amounts of 
time splitting a big data file into many small ones 
because of an arbitrary hard-coded file size limit. 
With open source software, such problems can 
easily be fixed up, because it is easier for non-
programmers to find someone that can fix a small 
bug for them than to try and discover by them-
selves the inner mysteries of UTF8 encoding, file 
permissions, missing libraries, etc.

Moreover, academic scientists that produce 
software are not always programming experts. 
As a consequence, many academic software sys-
tems are black boxes that can hardly be reused or 
integrated in user-friendly graphical front-ends. 
Releasing an academic software as open source 
allows competent people to clean the code, for 
instance in order to build a library with a well-
shaped interface. This aspect can be significant 
in an industrial partnership context.

Authentication
The fact that free software has a collective 

history can be felt by some authors as a double 
risk. First, authors can be afraid of being anony-
mous contributors that will not be acknowledged 
and cited. In fact, free software protects authors. 
Contributions can be signed with comments in 
source code. Moreover, free software licenses 
forbid to modify source code anonymously, so 
that you can know the author of each part of the 
software.

The second fear regards original software de-
velopers that want to control the evolution of their 
product. However, there is an easy solution to au-
thenticate an “official” version of free software: 
giving it a name that you can protect by legal 
means. It is common practice in the open source 
world, in particular for Linux distributions. For 
instance, Ubuntu is derived from Debian3, but 
both distributions are identified by their names 
that are trademarks and cannot be used freely.

Sébastien Paumier



53a

Compatibility
Most non free software is distributed in bi-

nary form. Such binaries are specific to a given 
architecture and a given system (except for some 
languages like Java). So, you have no choice, you 
must adapt your computer to the software you 
want. For instance, in many labs, you may find 
a computer with a very specific system version, 
because some software is not compatible with 
newer versions. On the contrary, as free software 
products come with their sources, it is possible to 
recompile them for your own computer. By the 
way, it is a good reason not to code with system-
restricted languages such as .NET, because com-
pilers do not exist for all systems.

Peer-reviewing
Scientific papers are to be peer-reviewed in 

order to guarantee their quality. One goal of this 
review process is to verify that announced results 
are consistent with experimentation. However, 
in full rigor, you cannot review a paper about a 
software system if it is not testable. Note that the 
software need not be open source for this pur-
pose, it just has to be runnable; but as we will see 
in the next section, open source is a big plus.

Study and improvement
An important guideline in Science is to im-

prove current practices and results, when possi-
ble. With private software, how can you improve 
it if you don’t know how it is made? Developers 
that have already tried to reproduce software just 
by reading the paper that goes with it know that it 
is not easy and sometimes not even possible. As 
you can hardly guess how software is made, your 
only option is to code your own idea and com-
pare the results, but the comparison with a black 
box is not very useful unless there is a significant 
performance gap. 

In fact, there are two main ways to improve 
software: improve the algorithms, improve the 
implementation. Improving an algorithm is often 
the easiest way, because its theorical cost (com-

plexity) is emphasized in the scientific paper that 
describes it. You can claim to have designed an 
algorithm with a better complexity, without even 
implementing it. However, complexity depends 
on implementation also. For instance, when an 
algorithm says “if x belongs to the set C...”, you 
may use a hashtable, a binary search tree, etc. So, 
if you don’t know how the algorithm is coded, 
you cannot know if you could improve the soft-
ware with a different implementation. It is the 
same for some low-level optimizations. You may 
highly improve performances, just by switching 
instructions or giving a buffer a size that is smart 
for the system. Such tricks may not be considered 
as Science proper, but if you tell physicists that 
their 7-days calculus could be achieved in only 
6, they may be interested. Open source software 
is good for Science because scientists can clearly 
see how it works.

People don't like to change their tools
Some academic software is not used as much 

as it should. When existing software fits users’ 
needs, there is no reason for switching to a new 
one, except if its interesting new features repre-
sent a major gain. If not, the new features will not 
be used, which will be a loss for the community. 
With open source software, it is not necessary to 
recode whole existing systems just in order to 
add something: you can concentrate your efforts 
on new features, and make them visible by add-
ing them to systems that are already used.

Software lifetime
Another reason for academic software to die 

young is that it is often written by young hands 
that exit the world of research once their PhD is 
obtained. In most cases, such software is a pro-
totype that only its author can run and modify, 
and when the author disappears, the software 
dies. Here, open source could offer an accessi-
bility guarantee. If software is interesting, it will 
remain possible to explore and improve it, even 
if it has become an orphan.

Why academic software should be Open Source



54a

Protecting good ideas by secrecy can be coun-
terproductive

The history of cryptography has shown that 
secret is in data, not in programs. There is no 
program that cannot be rewritten if one takes the 
time to do it. Even if an algorithm is not pub-
lic, the program that implements it is a sequence 
of instructions that can always be reverse-engi-
neered. Protecting software with secrecy is only 
a temporary solution. In fact, if a private soft-
ware is interesting enough, sooner or later it will 
be rewritten as open source. However, it may 
be a waste of time for programmers that recode 
it, and the major risk concerns the original au-
thors. By locking their software, they encourage 
the birth of competing software. Once an open 
source clone exists, there will be a competition 
that original authors are not sure to win. On the 
contrary, if people release their work as free soft-
ware from the begining, there won’t be compe-
tition but inheritance, which is more interesting 
for academic acknowledgment.

Cumulative work
In an idyllic world, all academic software 

should be constructive and enrich the Science 
toolbox. The free software philosophy perfectly 
fits this perspective since open source software 
is easier to reuse than a paper describing a meth-
od, because you don’t need to code it again to 
reuse it.

When a specialist provides free software that 
deals with his/her domain of expertise, people that 
do not have such expertise can benefit from it. It 
is more constructive for them than to badly study 
problems that have been solved for years. This is 
important, because science becomes highly spe-
cialized, and even in a small field, you cannot 
be an expert for all. In general, contributors with 
various skills or competences enrich open source 
software in diverse ways: spell checking code, 
translating comments, refactoring code, etc.

Many reasons for a good practice
Cumulative work, knowledge sharing and 

progress are ideals that science has in common 
with free software philosophy. Sharing source 
code is a constructive practice that could make 
the scientific community progress faster and im-
prove its practices. An experimental result that 
no one can verify should not be eligible to scien-
tific publication. We should apply the same rule 
to software: you should not publish a paper about 
a software system if it is not fully accessible. 

1 Free Software Foundation: www.fsf.org
2 Gnu project: www.gnu.org
3 http://www.ubuntu.com/community/ubuntustory/debian

Sébastien Paumier




